Skip to main content

Advertisement

Log in

A multifaceted computational report on the variants effect on KIR2DL3 and IFNL3 candidate gene in HCV clearance

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

HCV infection causes acute and chronic liver diseases including, cirrhosis and hepatocellular carcinoma. Following HCV infection, spontaneous clearance occurs in approximately 20 % of the population dependant upon HCV genotype. In this study, functional and non-functional variant analysis was executed for the classical and the latest HCV clearance candidate genes namely, KIR2DL3 and IFNL3. Initially, the functional effects of non-synonymous SNPs were assigned on exposing to homology based tools, SIFT, PolyPhen-2 and PROVEAN. Further, UTR and splice sites variants were scanned for the gene expression and regulation changes. Subsequently, the haplotype and CNV were also identified. The mutation H77Y of KIR2DL3 and R157Q, H156Y, S63L, R157W, F179V, H128R, T101M, R180C, and F176I of IFNL3 results in conservation, RMSD, total energy, stability, and secondary structures revealed a negative impact on the structural fitness. UTRscan and the splice site result indicate functional change, which may affect gene regulation and expression. The graphical display of selected population shows alleles like rs270779, rs2296370, rs10423751, rs12982559, rs9797797, and rs35987710 of KIR2DL3 and rs12972991, rs12980275, rs4803217, rs8109886, and rs8099917 of IFNL3 are in high LD with a measure of \({\text{r}}^{2 }\ge 0.8\) broadcasting its protective effect in HCV clearance. Similarly, CNV report suggests major DNA fragment loss that could have a profound impact on the gene expression affecting the overall phenotype. This roundup report specifies the effect of NK cell receptor, KIR2DL3 and IFNL3 variants that can have a better prospect in GWAS and immunogenetic studies leading to better understanding of HCV clearance and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CNV:

Copy number variation

DAA:

Direct acting antiviral

DNA:

Deoxyribonucleic acid

GWAS:

Genome-Wide Association Study

HCV:

Hepatitis C virus

HLA-C :

Human leukocyte antigen-C

IFNL3 :

Interferon lambda 3

IL28B :

Interleukin 28B

KIR :

Killer immunoglobulin-like receptor gene

LD:

Linkage disequilibrium

NK:

Natural killer cells

RMSD:

Root mean square deviation

SNP:

Single nucleotide polymorphism

UTR:

Untranslated region

References

  1. Lavanchy D (2011) Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 17(2):107–115

    Article  CAS  PubMed  Google Scholar 

  2. Davis GL, Dempster J, Meler JD, Orr DW, Walberg MW, Brown B et al (2008) Hepatocellular carcinoma: management of an increasingly common problem. Proc (Bayl Univ Med Cent) 21(3):266–280

    Google Scholar 

  3. Molina AC, Lozano JRG, Cano MAM, Cornejo AT, Torrecillas F, Reina JA et al (2012) HAVCR1 gene haplotypes and infection by different viral hepatitis C virus genotypes. Clin Vaccine Immunol 19:223–227

    Article  Google Scholar 

  4. Bartenschlager R, Lohmann V, Penin F (2013) The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 11(7):482–496

    Article  CAS  PubMed  Google Scholar 

  5. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM (2007) Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81(16):8374–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gentzsch J, Brohm C, Steinmann E, Friesland M, Menzel N, Vieyres G, Perin PM, Frentzen A, Kaderali L, Pietschmann T (2013) Hepatitis c Virus p7 is critical for capsid assembly and envelopment. PLoS Pathog 9(5):e1003355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R et al (2007) Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 3:e103

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jirasko V, Montserret R, Appel N, Janvier A, Eustachi L et al (2008) Structural and functional characterization of nonstructural protein 2 for its role in hepatitis C virus assembly. J Biol Chem 283:28546–28562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jirasko V, Montserret R, Lee JY, Gouttenoire J, Moradpour D et al (2010) Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog 6:e1001233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popescu CI, Callens N, Trinel D, Roingeard P, Moradpour D et al (2011) NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog 7:e1001278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stapleford KA, Lindenbach BD (2011) Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1E2 glycoprotein and NS3NS4A enzyme complexes. J Virol 85:1706–1717

    Article  CAS  PubMed  Google Scholar 

  12. Kohlway A, Pirakitikulr N, Ding SC, Yang F, Luo D, Lindenbach BD, Pyle A (2014) The linker region of NS3 plays a critical role in the replication and infectivity of hepatitis C virus. J Virol 88(18):10970–10974

    Article  PubMed  PubMed Central  Google Scholar 

  13. von Schulthess E, McCormick C, Williamson PT (2013) Determining the role of NS4B in membrane remodelling during Hcv replication. Biophys J 104(2):594a

    Article  Google Scholar 

  14. Zmurko J, Neyts J, Dallmeier K (2015) Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 4:205–223

    Article  Google Scholar 

  15. Pawlotsky JM (2013) NS5A inhibitors in the treatment of hepatitis C. J Hepatol 59(2):375–382

    Article  CAS  PubMed  Google Scholar 

  16. Gu M, Rice CM (2013) Structures of hepatitis C virus nonstructural proteins required for replicase assembly and function. Curr Opin Virol 3(2):129–136

    Article  CAS  PubMed  Google Scholar 

  17. Thomas E, Ghany MG, Liang TJ (2012) The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 23(1):1–12

    Article  CAS  PubMed  Google Scholar 

  18. Jesudian AB, Gelwan MG, Jacobson IM (2012) Advances in the treatment of hepatitis C virus infection. Gastroenterol Hepatol 8(2):91–101

    Google Scholar 

  19. Nguyen LT, Hall N, Sheerin D, Carr M, De Gascun CF (2016) Naturally occurring HCV NS5A/B inhibitor resistance-associated mutations to direct-acting antivirals. Antivir Ther. doi:10.3851/IMP3025

    Google Scholar 

  20. van de Ven N, Fortunak J, Simmons B, Ford N, Cooke GS, Khoo S, Hill A (2015) Minimum target prices for production of direct-acting antivirals and associated diagnostics to combat hepatitis C virus. Hepatology 61(4):1174–1182

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hill A, Simmons B, Gotham D, Fortunak J (2016) Rapid reductions in prices for generic sofosbuvir and daclatasvir to treat hepatitis C. J Virus Erad 2:28–31

    PubMed  PubMed Central  Google Scholar 

  22. Aschenbrenner DS (2016) A new treatment for chronic hepatitis C. AJN Am J Nurs 116(5):23

    Google Scholar 

  23. Voelker R (2016) Combination treatment for HCV. JAMA 315(11):1101

    Google Scholar 

  24. Kowdley KV, Lawitz E, Crespo I, Hassanein T, Davis MN, DeMicco M et al (2013) Sofosbuvir with pegylated interferon alfa-2a and ribavirin for treatment-naive patients with hepatitis C genotype-1 infection (ATOMIC): an open-label, randomised, multicentre phase 2 trial. Lancet 381(9883):2100–2107

    Article  CAS  PubMed  Google Scholar 

  25. Zeuzem S, Dusheiko GM, Salupere R, Mangia A, Flisiak R, Hyland RH et al (2014) Sofosbuvir and ribavirin in HCV genotypes 2 and 3. N Engl J Med 370(21):1993–2001

    Article  PubMed  Google Scholar 

  26. Feld JJ, Jacobson IM, Hézode C, Asselah T, Ruane PJ, Gruener N et al (2015) Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N Engl J Med 373(27):2599–2607

    Article  CAS  PubMed  Google Scholar 

  27. Knapp S, Warshow U, Km Alexander Ho, Hegazy D, Am Little, Fowell A et al (2011) A polymorphism in IL28B distinguishes exposed, uninfected individuals from spontaneous resolvers of HCV infection. Gastroenterology 141:320–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thio CL (2008) Host genetic factors and antiviral immune responses to hepatitis C virus. Clin Liver Dis 12(3):713–726

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rehermann B (2015) Natural killer cells in viral hepatitis. CMGH Cell Mol Gastroenterol Hepatol 1(6):578–588

    Article  PubMed  Google Scholar 

  30. Holder KA, Russell RS, Grant MD (2014) Natural killer cell function and dysfunction in hepatitis C virus infection. BioMed Res Int. doi:10.1155/2014/903764

    PubMed  PubMed Central  Google Scholar 

  31. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML et al (2009) IL28B is associated with response to chronic hepatitis C interferon and ribavirin therapy. Nat Genet 41:1100–1104

    Article  CAS  PubMed  Google Scholar 

  32. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, Huigin OC et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh R, Kaul R, Kaul A, Khan K (2007) A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol 12:1770–1787

    Article  Google Scholar 

  34. Huang P, Dong L, Lu X, Zhang Y, Chen H, Wang J et al (2014) Genetic variants in antigen presentation-related genes influence susceptibility to hepatitis C virus and viral clearance: a case control study. BMC Infect Dis 14:716–724

    Article  PubMed  PubMed Central  Google Scholar 

  35. Middleton D, Gonzelez F (2010) The extensive polymorphism of KIR genes. Immunology 129:8–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeniya M, Watanabe F, Aizawa Y, Toda G (1993) Immunogenetic background of hepatitis B virus infection and autoimmune hepatitis in Japan. Gastroenterol Jpn 28:69–80

    PubMed  Google Scholar 

  37. Meng XQ, Chen HG, Ma YL, Liu KZ (2003) Influence of HLA class II molecules on the outcome of hepatitis B virus infection in population of Zhejiang Province in China. Hepatobiliary Pancreat Dis Int 2:230–233

    CAS  PubMed  Google Scholar 

  38. Dring MM, Morrisona MH, McSharrya BP, Guinana KJ, Hagan R, Irish HCV Research Consortium et al (2011) Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection. PNAS 108:5736–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prokunina OL, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H et al (2013) A variant upstream of IFNL3 (IL28B) creating a novel interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45:164–171

    Article  Google Scholar 

  40. Bordi L, Caglioti C, Garbuglia AR, Lapa D, Castilletti C, Taibi C, Capobianchi MR, Lalle E (2015) IFNL4 and IFNL3 associated polymorphisms strongly influence the spontaneous IFN-alpha receptor-1 expression in HCV-infected patients. PLoS One 10(2):e0117397

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee MH, Yang HI, Lu SN, Lin YJ, Jen CL, Wong KH, Chan SY, Chen LC, Wang LY, L’Italien G, Yuan Y (2015) Polymorphisms near the IFNL3 gene associated with HCV RNA spontaneous clearance and hepatocellular carcinoma risk. Sci Rep 5:17030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257(2):342–358

    Article  CAS  PubMed  Google Scholar 

  43. Mihalek I, Res I, Lichtarge O (2006) Evolutionary trace report maker: a new type of service for comparative analysis of proteins. Bioinformatics 22:1656–1657

    Article  CAS  PubMed  Google Scholar 

  44. Morgan DH, Kristensen DM, Mittelman D, Lichtarge O (2006) ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22:2049–2050

    Article  CAS  PubMed  Google Scholar 

  45. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80

    Article  CAS  PubMed  Google Scholar 

  46. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  47. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramachandran S, Kota P, Ding F, Dokholyan NV (2011) Chiron. Proteins Struct Funct Bioinform 79:261–270

    Article  CAS  Google Scholar 

  50. Johansson MU, Zoete V, Michielin O, Guex N (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform 13:173

    Article  Google Scholar 

  51. Gilis D, Rooman M (2000) PoPMuSiC, an algorithm for predicting protein mutant stability changes, application to prion proteins. Protein Eng 13:849–856

    Article  CAS  PubMed  Google Scholar 

  52. Porollo A, Meller J (2007) Versatile annotation and publication quality visualization of protein complexes using Polyview-3D. BMC Bioinform 8:1–8

    Article  Google Scholar 

  53. Gromiha MM, Pujadas G, Magyar C, Selvaraj S, Simon I (2004) Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins 55(2):316–329

    Article  CAS  PubMed  Google Scholar 

  54. Adamczak R, Porollo A, Meller J (2004) Accurate prediction of solvent accessibility using neural networks-based regression. Proteins: Struct, Funct, Bioinf 56:753–767

    Article  CAS  Google Scholar 

  55. Magyar C, Gromiha MM, Pujadas G, Tusnady GE, Simon I (2005) SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Res 33:303–305

    Article  Google Scholar 

  56. Flavio M, Giorgio G, Flavio L, Michele I, Sabino L, Paul KJ et al (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:D141–D146

    Article  Google Scholar 

  57. Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S et al (2010) UTRdb and UTRsite (Release 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed  Google Scholar 

  58. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acid Res 37(9):e67

    Article  PubMed  PubMed Central  Google Scholar 

  59. International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  60. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  61. Vega DLFM, Isaac H, Collins A, Scafe CR, Halldorsson BV, Su X et al (2005) The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern. Genome Res 15:454–462

    Article  Google Scholar 

  62. Chelala Claude, Khan Arshad, Lemoine Nicholas R (2009) SNPnexus: a web database for functional annotation of newly discovered and public domain Single Nucleotide Polymorphisms. Bioinformatics 25(5):655–661

    Article  CAS  PubMed  Google Scholar 

  63. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80(1):91–104

    Article  CAS  PubMed  Google Scholar 

  64. Daar AS, Scherer SW, Hegele RA (2006) Implications for copy-number variation in the human genome: a time for questions. Nat Rev Genet 7:414

    Article  CAS  Google Scholar 

  65. Mihalek I, Res I, Lichtarge O (2004) A family of evolution-entropy hybrid methods for ranking of protein residues by importance. J Mol Bio 336(5):1265–1282

    Article  CAS  Google Scholar 

  66. Jia M, Yang B, Li Z, Shen H, Song X, Gu W (2014) Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 Gene. PLoS One 9(8):e104311

    Article  PubMed  PubMed Central  Google Scholar 

  67. Terczynska-Dyla E, Bibert S, Duong FH, Krol I, Jorgensen S, Collinet E et al (2014) Reduced IFN lambda4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. Nat Commun 5:5699

    Article  CAS  PubMed  Google Scholar 

  68. Ethan C, Jianjiong G, Ugur D, Benjamin GE, Selcuk SO, Bülent AA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  Google Scholar 

  69. J Hesketh (2005) 3′ UTRs and regulation. Encyclopedia of life sciences

  70. Lim KH et al (2011) Using positional distribution to identify splicing elements and predict mRNA processing defects in human genes. Proc Acad Sci USA 108:11093–11098

    Article  CAS  Google Scholar 

  71. Amanda WJ, Thomas CA (2010) The pathobiology of splicing. J Pathol 220(2):152–163

    Google Scholar 

  72. Adelle MFP, Stacy HM, Abigail J, Rochelle JC, Eckart B, Bruce SA et al (2014) The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus—induced microRNAs. Nat Immunol 15(1):72–81

    Google Scholar 

  73. Coppola N, Pisaturo M, Sagnelli Caterina, Onorato L, Sagnelli E (2015) Role of genetic polymorphisms in hepatitis C virus chronic Infection. World J Clin Cases 3(9):807–822

    Article  PubMed  PubMed Central  Google Scholar 

  74. Onabajo OO, Gill PP, Paquin A, Rao N, Liu L, Tang W et al (2015) Expression of interferon lambda 4 is associated with reduced proliferation and increased cell death in human hepatic cell. J Interferon Cytokine Res 0:1–13

    Google Scholar 

  75. Ullah AZD, Lemoine NR, Chelala C (2013) A practical guide for the functional annotation of genetic variations using SNPnexus. Brief Bioinform 14(4):437–447

    Article  Google Scholar 

  76. Ullah AZD, Lemoine NR, Chelala C (2012) SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Res 40(W1):W65–W70

    Article  Google Scholar 

  77. Smith AJ, Walters RG, Froguel P, Blakemore AI (2009) Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet Genome Res 123(1–4):17–26

    Article  PubMed Central  Google Scholar 

  78. D Harsh Dweep, K Nada Kubikova, G Norbert Gretz, V Konsantinos, Kyriacos (2015) Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity. Scientific Reports 12163

  79. Waheed R, Khan MH, Bano R, Rashid H (2012) Sequence and structure based assessment of nonsynonymous SNPs in hypertrichosis universalis. Bioinformation 8:316–318

    Article  PubMed  PubMed Central  Google Scholar 

  80. Aydin Z, Singh A, Bilmes J (2011) Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure. BMC Bioinformatics 12:154

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank VIT University for their computational support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Febin Prabhu Dass.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Dass, J.F.P. A multifaceted computational report on the variants effect on KIR2DL3 and IFNL3 candidate gene in HCV clearance. Mol Biol Rep 43, 1101–1117 (2016). https://doi.org/10.1007/s11033-016-4044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4044-5

Keywords

Navigation