Skip to main content

Advertisement

Log in

High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The human tissue-type plasminogen activator (tPA) is a key kinase of fibrinolysis that plays an important role in dissolving fibrin clots to promote thrombolysis. The recombinant human plasminogen activator (rhPA) has more thrombolytic advantages than the wild type tPA. To increase the half-life and thrombolytic activity of tPA, a mutant containing only the essential K2 fibrin-binding and P activating plasminogen domains of the wild type tPA was cloned. This fragment was then inserted into goat β-casein regulatory sequences. Then, a mammary gland-specific expression vector, PCL25/rhPA, was constructed, and the transgenic rabbits were generated. In this study, 18 live transgenic founders (12♀, 6♂) were generated using pronuclear microinjection. Six transgenic rabbits were obtained, and the expression levels of rhPA in the milk had a range of 15.2–630 µg/ml. A fibrin agarose plate assay of rhPA showed that it had strong thrombolytic bioactivity in vitro, and the highest specific activity was >360 (360 times more than that of alteplase). The results indicated that the rhPA containing only the K2 and P domains is efficiently expressed with higher thrombolytic bioactivity in the milk of transgenic rabbits. Our study also demonstrated a new method for the large-scale production of clinically relevant recombinant pharmaceutical proteins in the mammary glands of transgenic rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barrett AJ (2004) Handbook of proteolytic enzymes. E-STREAMS: electronic reviews of science and technology. Elsevier, Amsterdam, pp 2946–2952

    Google Scholar 

  2. Baumer W, Herrling GM, Feige K (2013) Pharmacokinetics and thrombolytic effects of the recombinant tissue-type plasminogen activator in horses. BMC Vet Res 9:158

    Article  PubMed  PubMed Central  Google Scholar 

  3. DeMers G, Meurer WJ, Shih R, Rosenbaum S, Vilke GM (2012) Tissue plasminogen activator and stroke: review of the literature for the clinician. J Emerg Med 43(6):1149–1154

    Article  PubMed  Google Scholar 

  4. Collen D, Lijnen HR (2009) The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol 29(8):1151–1155

    Article  CAS  PubMed  Google Scholar 

  5. Khodabakhsh F, Dehghani Z, Zia MF, Rabbani M, Sadeghi HM (2013) Cloning and expression of functional reteplase in Escherichia coli Top10. Avicenna J Med Biotechnol 5(3):168–175

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin L, Hu K (2014) Tissue plasminogen activator and inflammation: from phenotype to signaling mechanisms. Am J Clin Exp Immunol 3(1):30–36

    PubMed  PubMed Central  Google Scholar 

  7. Hong-Ying SS-GL, Jian-Quan C (2006) Expression of a variant of human tissue-type plasminogen activator in transgenic mouse milk. J Exp Anim Sci 43(3):211–218

    Article  Google Scholar 

  8. Lijnen HR, Collen D (1991) Strategies for the improvement of thrombolytic agents. Thromb Haemost 66(1):88–110

    CAS  PubMed  Google Scholar 

  9. Shafiee F, Moazen F, Rabbani M, Mir Mohammad Sadeghi H (2015) Optimization of the expression of reteplase in Escherichia coli Top10 using arabinose promoter. Jundishapur J Nat Pharm Prod 10(1):e16676

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smalling RW, Bode C, Kalbfleisch J, Sen S, Limbourg P, Forycki F, Habib G, Feldman R, Hohnloser S, Seals A (1995) More rapid, complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. Circulation 91(11):2725–2732

    Article  CAS  PubMed  Google Scholar 

  11. Lian LF, Xu F, Tang ZP et al (2014) Intraclot recombinant tissue-type plasminogen activator reduces perihematomal edema and mortality in patients with spontaneous intracerebral hemorrhage. J Huazhong Univ Sci Technol 34:165–171

    Article  CAS  Google Scholar 

  12. Dotan A, Kaiserman I, Kremer I, Ehrlich R, Bahar I (2014) Intracameral recombinant tissue plasminogen activator (r-tPA) for refractory toxic anterior segment syndrome. Br J Ophthalmol 98(2):252–255

    Article  PubMed  Google Scholar 

  13. Meunier JM, Wenker E, Lindsell CJ, Shaw GJ (2013) Individual lytic efficacy of recombinant tissue plasminogen activator in an in vitro human clot model: rate of “nonresponse”. Acad Emerg Med 20(5):449–455

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verheijen JH, Mullaart E, Chang GT, Kluft C, Wijngaards G (1982) A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb Haemost 48(3):266–269

    CAS  PubMed  Google Scholar 

  15. Verheijen JH, Caspers MP, Chang GT, de Munk GA, Pouwels PH, Enger-Valk BE (1986) Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J 5(13):3525–3530

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gillis JC, Wagstaff AJ, Goa KL (1995) Alteplase. A reappraisal of its pharmacological properties and therapeutic use in acute myocardial infarction. Drugs 50(1):102–136

    Article  CAS  PubMed  Google Scholar 

  17. Rijken DC, Groeneveld E, Barrett-Bergshoeff MM (1994) In vitro stability of a tissue-type plasminogen activator mutant, BM 06.022, in human plasma. Thromb Haemost 72(6):906–911

    CAS  PubMed  Google Scholar 

  18. Aghaabdollahian S, Rabbani M, Ghaedi K, Sadeghi HM (2014) Molecular cloning of reteplase and its expression in E. coli using tac promoter. Adv Biomed Res 3:190

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ellis K, Brener S (2004) New fibrinolytic agents for MI: as effective as current agents, but easier to administer. Cleve Clin J Med 71(1):29–30

    Article  Google Scholar 

  20. Rudolph NS (1999) Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17(9):367–374

    Article  CAS  PubMed  Google Scholar 

  21. Lubon H (1998) Transgenic animal bioreactors in biotechnology and production of blood proteins. Biotechnol Ann Rev 4:1–54

    Article  CAS  Google Scholar 

  22. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32(2):107–121

    Article  PubMed  Google Scholar 

  23. Bosze Z, Baranyi M, Whitelaw CB (2008) Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol 606:357–393

    Article  CAS  PubMed  Google Scholar 

  24. Serova IA, Dvoryanchikov GA, Andreeva LE, Burkov IA, Dias LP, Battulin NR, Smirnov AV, Serov OL (2012) A 3387 bp 5′-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice. Transgenic Res 21(3):485–498

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Tong J, Li S, Zhang R, Chen L, Wang Y, Zheng M, Wang M, Liu G, Dai Y, Zhao Y, Li N (2011) Over-expression of human lipoprotein lipase in mouse mammary glands leads to reduction of milk triglyceride and delayed growth of suckling pups. PLoS One 6(6):e20895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brem GBB, Goodman HM et al (1985) Production of transgenic mice, rabbits and pigs by microinjection. Theriogenology 20:251–252

    Google Scholar 

  27. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683

    Article  CAS  PubMed  Google Scholar 

  28. Xue F, Ma Y, Chen YE, Zhang J, Lin TA, Chen CH, Lin WW, Roach M, Ju JC, Yang L, Du F, Xu J (2012) Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells. Cell Reprog 14(4):364–376

    CAS  Google Scholar 

  29. Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99(3):261–282

    Article  CAS  PubMed  Google Scholar 

  30. Cheng YAL, Yuan YG et al (2012) Hybrid expression cassettes consisting of a milk protein promoter and a cytomegalovirus enhancer significantly increase mammary-specific expression of human lactoferrin in transgenic mice. Mol Reprod Dev 79:573–585

    Article  CAS  PubMed  Google Scholar 

  31. Bayne K (1998) Developing guidelines on the care and use of animals. Ann N Y Acad Sci 862:105–110

    Article  CAS  PubMed  Google Scholar 

  32. Du FXJ, Zhang J et al (2009) Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer. Cloning Stem Cells 11:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin TACC, Sung LY et al (2011) Open-pulled straw vitrification differentiates cryotolerance of in vitro cultured rabbit embryos at the eight-cell stage. Theriogenology 75:760–768

    Article  CAS  PubMed  Google Scholar 

  34. Jindal HK, Merchant E, Balschi JA, Zhangand Y, Koren G (2012) Proteomic analyses of transgenic LQT1 and LQT2 rabbit hearts elucidate an increase in expression and activity of energy producing enzymes. J Proteomics 75(17):5254–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Granelli-Piperno A, Reich E (1978) A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med 148(1):223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301(5897):214–221

    Article  CAS  PubMed  Google Scholar 

  37. Medved L, Nieuwenhuizen W (2003) Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 89(3):409–419

    CAS  PubMed  Google Scholar 

  38. Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Nat Biotechnol 9(9):835–838

    Article  CAS  Google Scholar 

  39. Zhou Y, Lin Y, Wu X, Xiong F, Lv Y, Zheng T, Huang P, Chen H (2012) The high-level expression of human tissue plasminogen activator in the milk of transgenic mice with hybrid gene locus strategy. Mol Biotechnol 50(2):137–144

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen VGMR, Ley ML et al (2014) Tissue-type plasminogen activator-induced fibrinolysis is enhanced in patients with breast, lung, pancreas and colon cancer. Blood coagul fibrinolysis 25:248–253

    Article  CAS  PubMed  Google Scholar 

  41. Kalyan NK, Lee SG, Wilhelm J, Fu KP, Hum WT, Rappaport R, Hartzell RW, Urbano C, Hung PP (1988) Structure-function analysis with tissue-type plasminogen activator. Effect of deletion of NH2-terminal domains on its biochemical and biological properties. J Biol Chem 263(8):3971–3978

    CAS  PubMed  Google Scholar 

  42. Rouf SA, Moo-Young M, Chisti Y (1996) Tissue-type plasminogen activator: characteristics, applications and production technology. Biotechnol Adv 14(3):239–266

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Chopp M, Teng H, Ding G, Jiang Q, Yang XP, Rhaleb NE, Zhang ZG (2014) Combination treatment with N-acetyl-seryl-aspartyl-lysyl-proline and tissue plasminogen activator provides potent neuroprotection in rats after stroke. Stroke 45(4):1108–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaberel T, Macrez R, Gauberti M, Montagne A, Hebert M, Petersen KU, Touze E, Agin V, Emery E, Ali C, Vivien D (2013) Immunotherapy blocking the tissue plasminogen activator-dependent activation of N-methyl-d-aspartate glutamate receptors improves hemorrhagic stroke outcome. Neuropharmacology 67:267–271

    Article  CAS  PubMed  Google Scholar 

  45. Mattes R (2001) The production of improved tissue-type plasminogen activator in Escherichia coli. Semin Thromb Hemost 27(4):325–336

    Article  CAS  PubMed  Google Scholar 

  46. Obukowicz MG, Gustafson ME, Junger KD, Leimgruber RM, Wittwer AJ, Wun TC, Warren TG, Bishop BF, Mathis KJ, McPherson DT et al (1990) Secretion of active kringle-2-serine protease in Escherichia coli. Biochemistry 29(41):9737–9745

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Jiang P, Gao J, Liao J, Sun S, Shen Z, Qin S (2008) Recombinant expression of rt-PA gene (encoding Reteplase) in gametophytes of the seaweed Laminaria japonica (Laminariales, Phaeophyta). Sci China C 51(12):1116–1120

    Article  CAS  Google Scholar 

  48. Davami F, Sardari S, Majidzadeh AK, Hemayatkar M, Barkhrdari F, Omidi M, Azami M, Adeli A, Davoudi N, Mahboudi F (2010) Expression of a novel chimeric truncated t-PA in CHO cells based on in silico experiments. J Biomed Biotechnol 2010:108159

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gouveia RM, Morais VA, Peixoto C, Sousa M, Regalla M, Alves PM, Costa J (2007) Production and purification of functional truncated soluble forms of human recombinant L1 cell adhesion glycoprotein from Spodoptera frugiperda Sf9 cells. Protein Expr Purif 52(1):182–193

    Article  CAS  PubMed  Google Scholar 

  50. Masroori N, Halabian R, Mohammadipour M, Roushandeh AM, Rouhbakhsh M, Najafabadi AJ, Fathabad ME, Salimi M, Shokrgozar MA, Roudkenar MH (2010) High-level expression of functional recombinant human coagulation factor VII in insect cells. Biotechnol Lett 32(6):803–809

    Article  CAS  PubMed  Google Scholar 

  51. Jahanian-Najafabadi A, Bouzari S, Oloomi M, Roudkenar MH, Mayr LM (2012) Attempts to express the A1-GMCSF immunotoxin in the baculovirus expression vector system. Biosci Biotechnol Biochem 76(4):749–754

    Article  CAS  PubMed  Google Scholar 

  52. Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J, Roberts B (1994) Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Biotechnology 12(7):699–702

    Article  CAS  PubMed  Google Scholar 

  53. Yang QEHY, Zhou GB, Yang ZQ, Zhu SE (2007) Stepwise in-straw dilution and direct transfer using open pulled straws (OPS) in the mouse: a potential model for field manipulation of vitrified embryos. J Reprod Dev 53:211–218

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Major Special Projects on New Cultivation for Transgenic Organisms (2011ZX08008-004), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Province Science and Technology Support Project (BE2013679) and the Graduate Research and Innovation Projects in Yangzhou University (CXLX-1435). We thank our teacher, Professor Yong-Cheng, for providing technical assistance. We would also like to thank the laboratory personnel for their roles in helping with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cheng.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Ge, X., Cheng, Y. et al. High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro. Mol Biol Rep 43, 775–783 (2016). https://doi.org/10.1007/s11033-016-4020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4020-0

Keywords

Navigation