Skip to main content
Log in

Analysis of bHLH coding genes using gene co-expression network approach

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TFs:

Transcription factors

PCC:

Pearson correlation coefficient

bHLH:

Basic-helix-loop-helix

References

  1. Friedman M, McDonald GM, Filadelfi-Keszi M (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132. doi:10.1080/07352689709701946

    Article  CAS  Google Scholar 

  2. Park SJ, Jiang K, Schatz MC, Lippman ZB (2012) Rate of meristem maturation determines inflorescence architecture in tomato. Proc Natl Acad Sci USA 109:639–644. doi:10.1073/pnas.1114963109

    Article  CAS  PubMed  Google Scholar 

  3. Gupta B (2013) Plant abiotic stress:omics approach. J Plant Biochem Physiol 1:1000e108. doi:10.4172/2329-9029

    Google Scholar 

  4. Buck MJ, Atchley WR (2003) Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol 56:742–750. doi:10.1007/s00239-002-2449-3

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Song JY, Hu YL, Xu J, Xu ZC, Ji AJ, Luo HM, Chen SL (2014) Research progress of the regulation on active compound biosynthesis by the bHLH transcription factors in plants. Yao Xue Xue Bao 49:435–442

    CAS  PubMed  Google Scholar 

  6. Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23:222–229. doi:10.1093/bioinformatics/btm222

    Article  Google Scholar 

  7. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. Plos Comput Biol 4:e1000117. doi:10.1371/journal.pcbi.1000117

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mole Biol 4:1–37. doi:10.2202/1544-6115.1128

    CAS  Google Scholar 

  9. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97:12182–12186. doi:10.1073/pnas.220392197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284. doi:10.1093/bioinformatics/btm554

    Article  CAS  PubMed  Google Scholar 

  11. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442. doi:10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  12. Milo R (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827. doi:10.1126/science.298.5594.824

    Article  CAS  PubMed  Google Scholar 

  13. Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci USA 99:9121–9126. doi:10.1073/pnas.132656399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter SL, Brechbuhler CM, Griffin M, Bond AT (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20:2242–2250. doi:10.1093/bioinformatics/bth234

    Article  CAS  PubMed  Google Scholar 

  15. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130. doi:10.1186/gb-2008-9-8-r130

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gehan MA, Greenham K, Mockler TC, McClung CR (2015) Transcriptional networks—crops, clocks, and abiotic stress. Curr Opin Plant Biol 24:39–46. doi:10.1016/j.pbi.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  17. Gibson SM, Ficklin SP, Isaacson S, Luo F, Feltus FA, Smith MC (2013) Massive-scale gene co-expression network construction and robustness testing using random matrix theory. PLoS ONE 8:e55871. doi:10.1371/journal.pone.0055871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Penfold CA, Wild DL (2011) How to infer gene networks from expression profiles, revisited. Interface Focus 1:857–870. doi:10.1098/rsfs.2011.0053

    Article  PubMed  PubMed Central  Google Scholar 

  19. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. doi:10.1155/2008/619832

    PubMed  Google Scholar 

  20. Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41:2817–2831. doi:10.1093/nar/gks1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Verk MC, Bol JF, Linthorst HJ (2011) Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol 11:88. doi:10.1186/1471-2229-11-88

    Article  PubMed  PubMed Central  Google Scholar 

  23. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328. doi:10.1186/1471-2105-13-328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guénolé A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T (2010) Rewiring of genetic networks in response to DNA damage. Science 330:1385–1389. doi:10.1126/science.1195618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chae L, Lee I, Shin J, Rhee SY (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15:177–184. doi:10.1016/j.pbi.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  26. De Smet R, Van de Peer Y (2012) Redundancy and rewiring of genetic networks following genome-wide duplication events. Curr Opin Plant Biol 15:168–176. doi:10.1016/j.pbi.2012.01.003

    Article  PubMed  Google Scholar 

  27. Jiménez-Gómez JM (2014) Network types and their application in natural variation studies in plants. Curr Opin Plant Biol 18:80–86. doi:10.1016/j.pbi.2014.02.010

    Article  PubMed  Google Scholar 

  28. Keurentjes JJB, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJM, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104:1708–1713. doi:10.1073/pnas.0610429104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23:1264–1271. doi:10.1105/tpc.110.082867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maere S, Van Dijck P, Kuiper M (2008) Extracting expression modules from perturbational gene expression compendia. BMC Syst Biol 2:33. doi:10.1186/1752-0509-2-33

    Article  PubMed  PubMed Central  Google Scholar 

  31. Movahedi S, Van de Peer Y, Vandepoele K (2011) Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol 156:1316–1330. doi:10.1104/pp.111.177865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank C Robin Buell who have submitted her experiments in GEO database of NCBI and made them freely available to the scientific community. Financial assistance under BTISnet programme of DBT, New Delhi and DST INSPIRE-SRF fellowship (IF Code: IF120740) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 23 kb)

Supplementary material 2 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Sanchita, Singh, G. et al. Analysis of bHLH coding genes using gene co-expression network approach. Mol Biol Rep 43, 677–685 (2016). https://doi.org/10.1007/s11033-016-4001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4001-3

Keywords

Navigation