Skip to main content
Log in

Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd2+/Zn2+ transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd2+/Zn2+ transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Price MS, Classen JJ, Payne GA (2001) Aspergillus niger absorbs copper and zinc from swine wastewater. Biores Technol 77:41–49

    Article  CAS  Google Scholar 

  2. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Biores Technol 98:2557–2561

    Article  CAS  Google Scholar 

  3. Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  4. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  5. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M et al (2012) The genome portal of the department of energy joint genome institute. Nucleic Acids Res 40:D26–D32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  PubMed  Google Scholar 

  7. Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Cao L, Jiang M, Zeng Z, Dub A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  PubMed  Google Scholar 

  9. Errasquın EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  10. Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme filamentous fungus Bispora sp. Microb Ecol 42:87–98

    Article  CAS  PubMed  Google Scholar 

  11. Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lewinson O, Lee AT, Rees DC (2009) P-type ATPase importer that discriminates between essential and toxic transition metals. PNAS 106:4677–4682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Momose Y, Kitagawa E, Iwahashi H (2001) Comparison of genome wide expression patterns in response to heavy metal treatment in Saccharomyces cerevisiae 1) Cadmium and mercury. Chem Bio Inform J 1:41–50

    Article  Google Scholar 

  14. de Freitas Lima A, de Moura GF, de Lima MAB, de Souza PM, de Silva CAA, de Campos Takaki GM, do Nascimento AE (2011) Role of the morphology and polyphosphate in Trichoderma harzianum related to cadmium removal. Molecules 16:2486–2500

    Article  Google Scholar 

  15. Raspanti E, Cacciola SO, Gotor C, Romero LC, García I (2009) Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere 76:48–54

    Article  CAS  PubMed  Google Scholar 

  16. Puglisi I, Faedda R, Sanzaro V, Lo Piero AR, Petrone G, Cacciola SO (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506:325–330

    Article  CAS  PubMed  Google Scholar 

  17. Hu W, Tedesco S, Faedda R, Petrone G, Cacciola SO, O’Keefe A, Sheehan D (2010) Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics. Talanta 80:1569–1575

    Article  CAS  PubMed  Google Scholar 

  18. Mendoza-Cozati D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protests and plants. FEMS Microbiol Rev 29:653–671

    Article  Google Scholar 

  19. Toone WM, Jones N (1998) Stress-activated signalling pathways in yeast. Genes Cells 3:485–498

    Article  CAS  PubMed  Google Scholar 

  20. Saiano F, Ciofalo M, Cacciola SO, Ramirez S (2005) Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. Water Res 39:2273–2280

    Article  CAS  PubMed  Google Scholar 

  21. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Marchler-Bauer A et al (2011) CDD: a Conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Article  Google Scholar 

  24. Demontis MA, Cacciola SO, Orrù M, Balmas V, Chessa V, Maserti BE, Mascia L, Raudino F, di San Magnano, Lio G, Migheli Q (2008) Development of real-time PCR systems based on SYBR® Green I and TaqMan® technologies for specific quantitative detection of Phoma tracheiphila in infected Citrus. Eur J Plant Pathol 120:339–351

    Article  CAS  Google Scholar 

  25. Heid C, Stevens J, Livak K, Williams P (1996) Real time quantitative PCR. Genome methods: genome research. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  26. Lo Piero AR, Mercurio V, Puglisi I, Petrone G (2010) Different roles of functional residues in the hydrophobic binding site of two sweet orange tau glutathione S-transferases. FEBS J 277:255–262

    Article  CAS  PubMed  Google Scholar 

  27. Faedda R, Puglisi I, Sanzaro V, Petrone G, Cacciola SO (2012) Expression of genes of Trichoderma harzianum in response to the presence of cadmium in the substrate. Nat Prod Res 26:2301–2308

    Article  CAS  PubMed  Google Scholar 

  28. Faedda R, Puglisi I, Lo Piero AR, Petrone G, Cacciola SO (2008) Glutathione transferase activity and identification of differentially expressed genes in Trichoderma harzianum grown with heavy metals. J Plant Pathol 90:S2.96 18.3

  29. Shimada H, Tominaga N, Kohra S, Ishibashi H, Mitsui Y, Ura K, Arizono K (2003) Metallothionein gene expression in the larvae of Caenorhabditis elegans is a potential biomarker for cadmium and mercury. Trace Elem Electrolytes 20:240–243

    CAS  Google Scholar 

  30. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  CAS  PubMed  Google Scholar 

  31. Appleyard MVCL, McPheat WL, Stark MJR (2000) A novel `two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372

    Article  CAS  PubMed  Google Scholar 

  32. Chang C, Stewart RC (1998) The Two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol 117:723–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503

    Article  PubMed  Google Scholar 

  34. Gadd GM (2009) Heavy metals pollutants: environmental and biotechnological aspects. Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford, pp 321–334

    Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Catania PRA program Grants of Prof. Petrone and Prof. Cacciola. The Authors wish to thank Mrs. Ann Davies Muni for the English revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivana Puglisi or Roberto Faedda.

Additional information

Ivana Puglisi and Roberto Faedda have contributed equally to the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciola, S.O., Puglisi, I., Faedda, R. et al. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum . Mol Biol Rep 42, 1559–1570 (2015). https://doi.org/10.1007/s11033-015-3924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3924-4

Keywords

Navigation