Skip to main content
Log in

Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypertension is a risk factor for the cardiovascular diseases. Although, several drugs are used to treat hypertension, the success of the antihypertensive therapy is limited. Resveratrol decreases blood pressure in animal models of hypertension. This study researched the mechanisms behind the effects of resveratrol on hypertension. Hypertension was induced by using the deoxycorticosterone acetate (DOCA)-induced (15 mg/kg twice per week, subcutaneously) salt-sensitive hypertension model of Wistar rats. Hypertension caused a decrease in endothelium-dependent relaxations of the isolated thoracic aorta. Resveratrol treatment (50 mg/l in drinking water) prevented DOCA salt-induced hypertension, but did not improve endothelial dysfunction. Plasma nitric oxide (NO), asymmetric dimethylarginine (ADMA), total antioxidant capacity (TAC) and hydrogen sulfide (H2S) levels were not changed by DOCA salt application. However, treatment of resveratrol significantly decreased ADMA and increased TAC and H2S levels. NO level in circulation was not significantly changed by resveratrol. DOCA salt application and resveratrol treatment also caused an alteration in the epigenetic modification of vessels. Staining pattern of histone 3 lysine 27 methylation (H3K27me3) in the aorta and renal artery sections was changed. These results show that preventive effect of resveratrol on DOCA salt-induced hypertension might due to its action on the production of some blood biomarkers and the epigenetic modification of vessels that would focus upon new aspect of hypertension prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coffman TM (2011) Under pressure: the search for the essential mechanisms of hypertension. Nat Med 17(11):1402–1409

    Article  CAS  PubMed  Google Scholar 

  2. Tang EH, Vanhoutte PM (2010) Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch 459(6):995–1004

    Article  CAS  PubMed  Google Scholar 

  3. Schulz E, Gori T, Münzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 34(6):665–673

    Article  CAS  PubMed  Google Scholar 

  4. Rush JW, Quadrilatero J, Levy AS, Ford RJ (2007) Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive rats. Exp Biol Med 232(6):814–822

    CAS  Google Scholar 

  5. Bhatt SR, Lokhandwala MF, Banday AA (2011) Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 667(1–3):258–264

    Article  CAS  PubMed  Google Scholar 

  6. Rimbaud S, Ruiz M, Piquereau J, Mateo P, Fortin D, Veksler V et al (2011) Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS ONE 6(10):e26391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Petrovski G, Gurusamy N, Das DK (2011) Resveratrol in cardiovascular health and disease. Ann NY Acad Sci 1215:22–33

    Article  PubMed  Google Scholar 

  8. Cowley AW Jr, Nadeau JH, Baccarelli A, Berecek K, Fornage M, Gibbons GH et al (2012) Report of the national heart, lung, and blood institute working group on epigenetics and hypertension. Hypertension 59(5):899–905

    Article  CAS  PubMed  Google Scholar 

  9. Navarro-Gonzalvez J, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    CAS  PubMed  Google Scholar 

  10. Usanmaz SE, Demirel Yilmaz E (2008) A microplate based spectrophotometric method for the determination of the total antioxidant capacity of human plasma: modified cupric reducing ability assay. Fundam Clin Pharmacol 22(67–67 Suppl):2

    Google Scholar 

  11. Zhang H, Moochhala SM, Bhatia M (2008) Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J Immunol 181:4320–4331

    Article  CAS  PubMed  Google Scholar 

  12. Buluc M, Demirel-Yılmaz E (2002) Possible mechanism for depression of smooth muscle tone by resveratrol. In: Varro A, Vegh A (eds) Advances in Recent Cardiovascular Research. Monduzzi Editore, Bologna, pp 55–59

    Google Scholar 

  13. Buluc M, Demirel-Yilmaz E (2006) Resveratrol decreases calcium sensitivity of vascular smooth muscle and enhances cytosolic calcium increase in endothelium. Vascul Pharmacol 44(4):231–237

    Article  CAS  PubMed  Google Scholar 

  14. Buluc M, Ayaz M, Turan B, Demirel-Yilmaz E (2007) Resveratrol-induced depression of the mechanical and electrical activities of the rat heart is reversed by glyburide: evidence for possible K(ATP) channels activation. Arch Pharm Res 30(5):603–607

    Article  CAS  PubMed  Google Scholar 

  15. Lind L, Granstam SO, Millgård J (2000) Endothelium-dependent vasodilation in hypertension: a review. Blood Press 9(1):4–15

    Article  CAS  PubMed  Google Scholar 

  16. Soylemez S, Sepici A, Akar F (2009) Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats. Cardiovasc Drugs Ther 23(6):449–458

    Article  CAS  PubMed  Google Scholar 

  17. Montecucco F, Pende A, Quercioli A, Mach F (2011) Inflammation in the pathophysiology of essential hypertension. J Nephrol 24(1):23–34

    Article  PubMed  Google Scholar 

  18. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Martin C, Cameron J, McGrath B (2008) Mechanical and circulating biomarkers in isolated clinic hypertension. Clin Exp Pharmacol Physiol 35(4):402–408

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Song Y, Zhang X, Liu Z, Zhang W, Mao W, Wang W, Cui W, Zhang X, Jia X, Li N, Han C, Liu C (2005) Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin Exp Pharmacol Physiol 32(12):1049–1054

    Article  PubMed  Google Scholar 

  21. Chander V, Chopra K (2006) Possible role of nitric oxide in the protective effect of resveratrol in 5/6th nephrectomized rats. J Surg Res 133(2):129–135

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Zhou Z, Jiang DJ, Li D, Tan B, Liu H et al (2007) Reduction of NO- and EDHF-mediated vasodilatation in hypertension: role of asymmetric dimethylarginine. Clin Exp Hypertens 29(7):489–501

    Article  CAS  PubMed  Google Scholar 

  23. Borde P, Mohan M, Kasture S (2011) Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Nat Prod Res 25(16):1549–1559

    Article  CAS  PubMed  Google Scholar 

  24. Castro MM, Rizzi E, Ceron CS, Guimaraes DA, Rodrigues GJ, Bendhack LM, Gerlach RF, Tanus-Santos JE (2012) Doxycycline ameliorates 2 K-1C hypertension-induced vascular dysfunction in rats by attenuating oxidative stress and improving nitric oxide bioavailability. Nitric Oxide 26(3):162–168

    Article  CAS  PubMed  Google Scholar 

  25. Gómez-Guzmán M, Jiménez R, Sánchez M, Zarzuelo MJ, Galindo P, Quintela AM et al (2012) Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 52(1):70–79

    Article  PubMed  Google Scholar 

  26. Mizutani K, Ikeda K, Nishikata T, Yamori Y (2000) Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Hypertens 18(12):1833–1840

    Article  CAS  PubMed  Google Scholar 

  27. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313(1):22–27

    Article  CAS  PubMed  Google Scholar 

  28. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    CAS  PubMed  Google Scholar 

  29. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400

    Article  CAS  PubMed  Google Scholar 

  30. Wu LP, Wang X, Li L, Zhao Y, Lu S, Yu Y et al (2008) Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol 28(10):3219–3235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K et al (2012) A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336(6087):1445–1448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Justin N, De Marco V, Aasland R, Gamblin SJ (2010) Reading, writing and editing methylated lysines on histone tails: new insights from recent structural studies. Curr Opin Struct Biol 20(6):730–738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research Grants from the Novartis Research Award. We are grateful to Maggie Li for the editing of the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Demirel-Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Uludag, M.O., Usanmaz, S.E. et al. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep 42, 35–42 (2015). https://doi.org/10.1007/s11033-014-3737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3737-x

Keywords

Navigation