Skip to main content
Log in

Alterations in the Sp1 binding and Fmr-1 gene expression in the cortex of the brain during maturation and aging of mouse

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fragile X mental retardation protein (FMRP) has been implicated in learning, memory and cognition, therefore, information on alterations in FMRP expression during maturation and aging may provide a clue towards understanding mechanisms of age-dependent cognitive changes in the brain. In the present paper, we have studied Fmr-1 gene expression and its correlation with interaction of a tans-acting factor Sp1with Fmr-1 promoter in the cerebral cortex of female mice at post natal period during maturation and aging. Our data reveal that level of Fmr-1 transcript in the cerebral cortex is significantly up regulated at day 7 after birth compared to day 0 (the day of birth) and is gradually down regulated from day 15 onward to old age. The pattern of Fmr-1 transcript levels corresponds with the level of FMRP, however, its level is significantly up regulated in old age compared to adult mice. Our EMSA data revealed the formation of a single complex as a result of binding of Sp1with Fmr-1 promoter sequence. Its intensity gradually decreased from the day 0 (day of birth) till day 15, remained unaltered in young, significantly decreased in adult and significantly increased in old age. Our data suggests that age-dependent alteration in the Fmr-1 gene expression is associated with Sp1 interaction with Fmr-1 promoter which in turn might be related with cognitive development during brain maturation and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179

    Article  CAS  PubMed  Google Scholar 

  2. Kreutz M, König I, Mikhaylova M, Spilker C, Zuschratter W (2008) Molecular Mechanisms of Dendritic Spine Plasticity in Development and Aging. Handbook of neurochemistry and molecular neurobiology: development and aging changes in the nervous system: 245–259

  3. Lohmann C, Kessels HW (2014) The developmental stages of synaptic plasticity. J physiol 592:13–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254–1257

    Article  CAS  PubMed  Google Scholar 

  5. Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 6:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Scotto-Lomassese S, Nissant A, Mota T, Neant-Fery M, Oostra BA et al (2011) Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb. J Neurosci 31:2205–2215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Siller SS, Broadie K (2011) Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech 4:673–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Friedman SH, Dani N, Rushton E, Broadie K (2013) Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila. Dis Model Mech 6:1400–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA et al (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci 94:5401–5404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brackett DM, Qing F, Amieux PS, Sellers DL, Horner PJ et al (2013) FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain. PLoS One 8:e58296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Eichler DC, Liberatore JA, Shumard CM (1993) Selection of a preribosomal RNA processing site by a nucleolar endoribonuclease involves formation of a stable complex. Nucleic Acids Res 21:5775–5781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile x syndrome. Annu Rev Genom Hum Genet 8:109–129

    Article  CAS  Google Scholar 

  13. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gross C, Berry-Kravis EM, Bassell GJ (2012) Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology 37:178–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Investig 122:4314–4322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Charalambous DC, Pasciuto E, Mercaldo V, Pilo Boyl P, Munck S et al (2013) KIF1Bbeta transports dendritically localized mRNPs in neurons and is recruited to synapses in an activity-dependent manner. Cell Mol Life Sci 70:335–356

    Article  CAS  PubMed  Google Scholar 

  17. Kalidas S, Smith DP (2003) Functional genomics, fragile X syndrome, and RNA interference. Arch Neurol 60:1197–1200

    Article  PubMed  Google Scholar 

  18. Gessert S, Bugner V, Tecza A, Pinker M, Kuhl M (2010) FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development. Dev Biol 341:222–235

    Article  CAS  PubMed  Google Scholar 

  19. Gabus C, Mazroui R, Tremblay S, Khandjian EW, Darlix JL (2004) The fragile X mental retardation protein has nucleic acid chaperone properties. Nucleic Acids Res 32:2129–2137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. De Rubeis S, Bagni C (2010) Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci 43:43–50

    Article  PubMed  Google Scholar 

  21. Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S et al (2007) A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10:578–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Peprah E (2012) Fragile X syndrome: the FMR1 CGG repeat distribution among world populations. Ann Hum Genet 76:178–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Krueger DD, Bear MF (2011) Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med 62:411–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. De Rubeis S, Fernandez E, Buzzi A, Di Marino D, Bagni C (2012) Molecular and cellular aspects of mental retardation in the Fragile X syndrome: from gene mutation/s to spine dysmorphogenesis. Adv Exp Med Biol 970:517–551

    Article  PubMed  Google Scholar 

  25. Kumari D, Gabrielian A, Wheeler D, Usdin K (2005) The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the Fragile X mental retardation gene promoter. Biochem J 386:297–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Smith KT, Nicholls RD, Reines D (2006) The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res 34:1205–1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Carrillo C, Cisneros B, Montanez C (1999) Sp1 and AP2 transcription factors are required for the human fragile mental retardation promoter activity in SK-N-SH neuronal cells. Neurosci Lett 276:149–152

    Article  CAS  PubMed  Google Scholar 

  28. Cote F, Schussler N, Boularand S, Peirotes A, Thevenot E et al (2002) Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH) gene in the pineal gland. J Neurochem 81:673–685

    Article  CAS  PubMed  Google Scholar 

  29. Smith KT, Coffee B, Reines D (2004) Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo. Hum Mol Genet 13:1611–1621

    Article  CAS  PubMed  Google Scholar 

  30. Garber K, Smith KT, Reines D, Warren ST (2006) Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 16:270–275

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  33. Singh K, Gaur P, Prasad S (2007) Fragile x mental retardation (Fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 34:173–181

    Article  CAS  PubMed  Google Scholar 

  34. Gupta RK, Prasad S (2014) Differential regulation of GLT-1/EAAT2 gene expression by NF-kappaB and N-myc in male mouse brain during postnatal development. Neurochem Res 39:150–160

    Article  CAS  PubMed  Google Scholar 

  35. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Prasad S, Singh K (2008) Interaction of USF1/USF2 and alpha-Pal/Nrf1 to Fmr-1 promoter increases in mouse brain during aging. Biochem Biophys Res Commun 376:347–351

    Article  CAS  PubMed  Google Scholar 

  37. Berman RF, Murray KD, Arque G, Hunsaker MR, Wenzel HJ (2012) Abnormal dendrite and spine morphology in primary visual cortex in the CGG knock-in mouse model of the fragile X premutation. Epilepsia 53(Suppl 1):150–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kaplan ES, Cao Z, Hulsizer S, Tassone F, Berman RF et al (2012) Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J Neurochem 123:613–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B et al (2011) A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 21:2190–2202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lu R, Wang H, Liang Z, Ku L, O’Donnell WT et al (2004) The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 101:15201–15206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pan F, Aldridge GM, Greenough WT, Gan WB (2010) Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA 107:17768–17773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pacey LK, Xuan IC, Guan S, Sussman D, Henkelman RM et al (2013) Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 22:3920–3930

    Article  CAS  PubMed  Google Scholar 

  43. Singh K, Prasad S (2008) Differential expression of Fmr-1 mRNA and FMRP in female mice brain during aging. Mol Biol Rep 35:677–684

    Article  CAS  PubMed  Google Scholar 

  44. Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5:e52

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wang H, Wu LJ, Kim SS, Lee FJ, Gong B et al (2008) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647

    Article  CAS  PubMed  Google Scholar 

  46. Tassone F, Beilina A, Carosi C, Albertosi S, Bagni C et al (2007) Elevated FMR1 mRNA in premutation carriers is due to increased transcription. RNA 13:555–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Drouin R, Angers M, Dallaire N, Rose TM, Khandjian EW et al (1997) Structural and functional characterization of the human FMR1 promoter reveals similarities with the hnRNP-A2 promoter region. Hum Mol Genet 6:2051–2060

    Article  CAS  PubMed  Google Scholar 

  48. Prasad S, Singh K (2008) Age- and sex-dependent differential interaction of nuclear trans-acting factors with Fmr-1 promoter in mice brain. Neurochem Res 33:1028–1035

    Article  CAS  PubMed  Google Scholar 

  49. Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V et al (1999) Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19:5504–5511

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Wu J, Xue L, Weng M, Sun Y, Zhang Z et al (2007) Sp1 is essential for p16 expression in human diploid fibroblasts during senescence. PLoS One 2:e164

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

PG thanks UGC for providing JRF and ICMR for Senior Research Fellowships (File No: 45/12/2008/BMS/aging). Financial assistance from CSIR (37/1389/09/EMR-II) and BRNS (2009/37/55/3298), Govt. of India to SP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, P., Prasad, S. Alterations in the Sp1 binding and Fmr-1 gene expression in the cortex of the brain during maturation and aging of mouse. Mol Biol Rep 41, 6855–6863 (2014). https://doi.org/10.1007/s11033-014-3571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3571-1

Keywords

Navigation