Skip to main content
Log in

Ischemic injury of the liver in a porcine model of cardiac death assessed by in vivo microdialysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study aims to evaluate the ischemic injury of the liver in a porcine model of cardiac death assessed by in vivo microdialysis. A porcine model of cardiac death was established by the suffocation method. Metabolic indicators were monitored using the microdialysis technique during warm ischemia time (WIT) and cold ischemia time (CIT). Pathological changes in ischemic-injured livers were observed by haematoxylin–eosin staining. The predictive values of biochemical parameters regarding the liver donor were evaluated by receiver operating characteristic curve analysis. All statistical analyses were conducted using the SPSS 18.0 software (SPSS Inc, Chicago, Illinois, USA). The degree of warm ischemic injury of the livers increased with prolonged WIT. Serum glucose, glycerol, pyruvate, lactic acid levels and lactate-to-pyruvate (L/P) ratio increased gradually during WIT. Results from Pearson correlation analyses indicated that serum lactate level and L/P ratio were positively associated with the degree of warm ischemic injury of the livers. The degree of cold ischemic injury of the livers gradually increased after 12 h CIT. Serum glucose, lactic acid and L/P ratio achieved a peak after 6–8 h of CIT, but gradually decreased with prolonged CIT. The peak of glycerol occurred after 8 h of CIT, while no changes were found with prolonged CIT. Serum pyruvate level exhibited an increasing trend after 12 h CIT. Our results confirmed that serum glucose and lactate levels were negatively correlated with cold ischemic injury of the liver. However, serum glycerol and pyruvate levels showed positive correlations with cold ischemic injury of the liver. The liver donor was unavailable after 30 min WIT and 24 h CIT. The cut-off value of serum lactate level for warm ischemic injury of the livers was 2.374 with a sensitivity (Sen) of 90 % and specificity (Spe) of 95 %; while the L/P radio was 0.026 (Sen = 80 %, Spe = 83 %). In addition, the cut-off values of serum glucose, lactate, glycerol and pyruvate levels for cold ischemic injury of the livers were 0.339 (Sen = 100 %, Spe = 77 %), 1.172 (Sen = 100 %, Spe = 61 %), 56.359 (Sen = 100 %, Spe = 65 %) and 0.020 (Sen = 100 %, Spe = 67 %), respectively. Our findings provide empirical evidences that serum glucose, lactate levels and L/P ratio may be good indicators for the degree of warm ischemic injury of the livers after cardiac death; while serum glucose, lactate, glycerol and pyruvate levels may be important in predicting cold ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fiorina P, Vezzulli P, Bassi R, Gremizzi C, Falautano M, D’Addio F, Vergani A, Chabtini L et al (2012) Near normalization of metabolic and functional features of the central nervous system in type 1 diabetic patients with end-stage renal disease after kidney–pancreas transplantation. Diabetes Care 35:367–374. doi:10.2337/dc11-1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dunham CC (2008) “Body property”: challenging the ethical barriers in organ transplantation to protect individual autonomy. Ann Health Law 17:39–65, table of contents

  3. Jay CL, Skaro AI, Ladner DP, Wang E, Lyuksemburg V, Chang Y, Xu H, Talakokkla S et al (2012) Comparative effectiveness of donation after cardiac death versus donation after brain death liver transplantation: recognizing who can benefit. Liver Transplant 18:630–640. doi:10.1002/lt.23418

    Article  Google Scholar 

  4. Klein AS, Messersmith EE, Ratner LE, Kochik R, Baliga PK, Ojo AO (2010) Organ donation and utilization in the United States, 1999–2008. Am J Transplant 10:973–986. doi:10.1111/j.1600-6143.2009.03008.x

    Article  CAS  PubMed  Google Scholar 

  5. Wolfe RA, Roys EC, Merion RM (2010) Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant 10:961–972. doi:10.1111/j.1600-6143.2010.03021.x

    Article  CAS  PubMed  Google Scholar 

  6. Huang J, Millis JM, Mao Y, Millis MA, Sang X, Zhong S (2012) A pilot programme of organ donation after cardiac death in China. Lancet 379:862–865. doi:10.1016/S0140-6736(11)61086-6

    Article  PubMed  Google Scholar 

  7. Liu S, Liu C, Cao X, Shang B, Chen A, Liu B (2013) The difference in the attitude of Chinese and Japanese college students regarding deceased organ donation. Transplant Proc 45:2098–2101. doi:10.1016/j.transproceed.2012.09.119

    Article  CAS  PubMed  Google Scholar 

  8. Ueki S, Dhupar R, Cardinal J, Tsung A, Yoshida J, Ozaki KS, Klune JR, Murase N et al (2010) Critical role of interferon regulatory factor-1 in murine liver transplant ischemia reperfusion injury. Hepatology 51:1692–1701. doi:10.1002/hep.23501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. de Vera ME, Lopez-Solis R, Dvorchik I, Campos S, Morris W, Demetris AJ, Fontes P, Marsh JW (2009) Liver transplantation using donation after cardiac death donors: long-term follow-up from a single center. Am J Transplant 9:773–781. doi:10.1111/j.1600-6143.2009.02560.x

    Article  PubMed  Google Scholar 

  10. Reich DJ, Mulligan DC, Abt PL, Pruett TL, Abecassis MM, D’Alessandro A, Pomfret EA, Freeman RB et al (2009) ASTS recommended practice guidelines for controlled donation after cardiac death organ procurement and transplantation. Am J Transplant 9:2004–2011. doi:10.1111/j.1600-6143.2009.02739.x

    Article  CAS  PubMed  Google Scholar 

  11. Schleicher C, Wolters H, Kebschull L, Anthoni C, Suwelack B, Senninger N, Mersfeld B, Palmes D (2011) Impact of failed allograft nephrectomy on initial function and graft survival after kidney retransplantation. Transpl Int 24:284–291. doi:10.1111/j.1432-2277.2010.01197.x

    Article  PubMed  Google Scholar 

  12. Christians U, Klawitter J, Brunner N, Schmitz V (2011) Biomarkers of immunosuppressant organ toxicity after transplantation: status, concepts and misconceptions. Expert Opin Drug Metab Toxicol 7:175–200. doi:10.1517/17425255.2011.544249

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mendes-Braz M, Elias-Miro M, Jimenez-Castro MB, Casillas-Ramirez A, Ramalho FS, Peralta C (2012) The current state of knowledge of hepatic ischemia–reperfusion injury based on its study in experimental models. J Biomed Biotechnol 2012:298657. doi:10.1155/2012/298657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sainz-Barriga M, Reyntjens K, Costa MG, Scudeller L, Rogiers X, Wouters P, de Hemptinne B, Troisi RI (2010) Prospective evaluation of intraoperative hemodynamics in liver transplantation with whole, partial and DCD grafts. Am J Transplant 10:1850–1860. doi:10.1111/j.1600-6143.2010.03207.x

    Article  CAS  PubMed  Google Scholar 

  15. Isaksson B, D’Souza MA, Jersenius U, Ungerstedt J, Lundell L, Permert J, Bjornstedt M, Nowak G (2011) Continuous assessment of intrahepatic metabolism by microdialysis during and after portal triad clamping. J Surg Res 169:214–219. doi:10.1016/j.jss.2009.11.720

    Article  CAS  PubMed  Google Scholar 

  16. Melgaard L, Hersini KJ, Gazerani P, Petersen LJ (2013) Retrodialysis: a review of experimental and clinical applications of reverse microdialysis in the skin. Skin Pharmacol Physiol 26:160–174. doi:10.1159/000351341

    Article  CAS  PubMed  Google Scholar 

  17. Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651:1–14. doi:10.1016/j.aca.2009.07.064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Le Roux P (2013) Physiological monitoring of the severe traumatic brain injury patient in the intensive care unit. Curr Neurol Neurosci Rep 13:331. doi:10.1007/s11910-012-0331-2

    Article  PubMed  Google Scholar 

  19. Fonouni H, Jarahian P, Rad MT, Golriz M, Faridar A, Esmaeilzadeh M, Hafezi M, Macher-Goeppinger S et al (2013) Evaluating the effects of extended cold ischemia on interstitial metabolite in grafts in kidney transplantation using microdialysis. Langenbecks Arch Surg 398:87–97. doi:10.1007/s00423-012-1010-0

    Article  PubMed  Google Scholar 

  20. Bossers SM, de Boer RD, Boer C, Peerdeman SM (2013) The diagnostic accuracy of brain microdialysis during surgery: a qualitative systematic review. Acta Neurochir (Wien) 155:345–353. doi:10.1007/s00701-012-1582-z

    Article  Google Scholar 

  21. Haugaa H, Thorgersen EB, Pharo A, Boberg KM, Foss A, Line PD, Sanengen T, Almaas R et al (2012) Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transplant 18:839–849. doi:10.1002/lt.23425

    Article  Google Scholar 

  22. Ungerstedt J, Nowak G, Ungerstedt U, Ericzon BG (2009) Microdialysis monitoring of porcine liver metabolism during warm ischemia with arterial and portal clamping. Liver Transplant 15:280–286. doi:10.1002/lt.21690

    Article  Google Scholar 

  23. Kannerup AS, Gronbaek H, Funch-Jensen P, Jorgensen RL, Mortensen FV (2009) The influence of preconditioning on metabolic changes in the pig liver before, during, and after warm liver ischemia measured by microdialysis. Hepatol Int 3:310–315. doi:10.1007/s12072-008-9104-z

    Article  PubMed Central  PubMed  Google Scholar 

  24. Jensen HA, Loukogeorgakis S, Yannopoulos F, Rimpilainen E, Petzold A, Tuominen H, Lepola P, Macallister RJ et al (2011) Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 123:714–721. doi:10.1161/CIRCULATIONAHA.110.986497

    Article  CAS  PubMed  Google Scholar 

  25. Raittinen LP, Berg L, Nunes S, Ahonen H, Parviainen I, Laranne J, Tenhunen JJ (2012) Sympathetic innervation does not contribute to glycerol release in ischemic flaps. Scand J Clin Lab Invest 72:420–426. doi:10.3109/00365513.2012.691543

    Article  CAS  PubMed  Google Scholar 

  26. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  PubMed  Google Scholar 

  27. Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S (2010) Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovasc Revasc Med 11:8–19. doi:10.1016/j.carrev.2009.03.004

    Article  PubMed  Google Scholar 

  28. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516–523. doi:10.1161/STROKEAHA.109.573691

    Article  PubMed  Google Scholar 

  29. Puri V, Scavuzzo M, Guthrie T, Hachem R, Krupnick AS, Kreisel D, Patterson GA, Meyers BF (2009) Lung transplantation and donation after cardiac death: a single center experience. Ann Thorac Surg 88:1609–1614; discussion 1614–1605. doi:10.1016/j.athoracsur.2009.06.039

    Article  PubMed  Google Scholar 

  30. Tuttle-Newhall JE, Krishnan SM, Levy MF, McBride V, Orlowski JP, Sung RS (2009) Organ donation and utilization in the United States: 1998–2007. Am J Transplant 9:879–893. doi:10.1111/j.1600-6143.2009.02565.x

    Article  CAS  PubMed  Google Scholar 

  31. Rostami E, Bellander BM (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5:596–604

    Article  PubMed Central  PubMed  Google Scholar 

  32. Keller AK, Kierulf-Lassen C, Moldrup U, Bibby BM, Jespersen B (2013) Messengers of renal graft quality during warm and cold ischemia: a porcine microdialysis study. Transplant Proc 45:1172–1177. doi:10.1016/j.transproceed.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Schlosser S, Spanholtz T, Merz K, Dennler C, Banic A, Erni D, Plock JA (2010) The choice of anesthesia influences oxidative energy metabolism and tissue survival in critically ischemic murine skin. J Surg Res 162:308–313. doi:10.1016/j.jss.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Li C, Yan ZY, Yang J, Chen H (2010) Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J Neurosci Methods 189:162–168. doi:10.1016/j.jneumeth.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  35. Huet PM, Nagaoka MR, Desbiens G, Tarrab E, Brault A, Bralet MP, Bilodeau M (2004) Sinusoidal endothelial cell and hepatocyte death following cold ischemia–warm reperfusion of the rat liver. Hepatology 39:1110–1119. doi:10.1002/hep.20157

    Article  PubMed  Google Scholar 

  36. Jansson K, Ungerstedt J, Jonsson T, Redler B, Andersson M, Ungerstedt U, Norgren L (2003) Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischaemia: a pilot study. Scand J Gastroenterol 38:1007–1011

    Article  CAS  PubMed  Google Scholar 

  37. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41. doi:10.1089/neu.2005.22.3

    Article  PubMed  Google Scholar 

  38. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR (2001) Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 94:740–749. doi:10.3171/jns.2001.94.5.0740

    Article  CAS  PubMed  Google Scholar 

  39. Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG (2002) Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transplant 8:424–432. doi:10.1053/jlts.2002.32943

    Article  Google Scholar 

  40. Liu K, Lin Y, Xiang L, Yu P, Su L, Mao L (2008) Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochem Int 52:1247–1255. doi:10.1016/j.neuint.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  41. Waldenstrom A, Haney M, Biber B, Kavianipour M, Moritz T, Stranden P, Wikstrom G, Ronquist G (2010) Ischaemic preconditioning is related to decreasing levels of extracellular adenosine that may be metabolically useful in the at-risk myocardium: an experimental study in the pig. Acta Physiol (Oxf) 199:1–9. doi:10.1111/j.1748-1716.2009.02071.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, DH., Liu, H., Chen, Y. et al. Ischemic injury of the liver in a porcine model of cardiac death assessed by in vivo microdialysis. Mol Biol Rep 41, 6611–6618 (2014). https://doi.org/10.1007/s11033-014-3544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3544-4

Keywords

Navigation