Skip to main content
Log in

Identification and expression of the elongator protein 2 (Ajelp2) gene, a novel regeneration-related gene from the sea cucumber Apostichopus japonicus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Elongator proteins comprise six subunits (ELP1–ELP6) and form protein complexes. The elongator protein 2 gene (elp2) encodes a protein with a WD40 repeats domain that acts as a scaffold for complex assembly. It also plays an important role in growth and development. In this study, the full-length cDNA of elongator protein 2 (Ajelp2) was cloned from the sea cucumber Apostichopus japonicus (A. japonicus) using rapid amplification of cDNA ends PCR techniques and comprised 3,058 bp, including a 54 bp 5′ untranslated (UTR), a 526 bp 3′ UTR and a 2,478 bp open reading frame encoding a polypeptide of 825 amino acids. The Ajelp2 sequence showed high homology to 12 other species. The molecular weight and isoelectric of point the presumptive protein were 91.6 kDa and 5.84, respectively. In situ hybridization indicated that the gene is expressed in the body wall, intestine, respiratory tree and longitudinal muscle. The expression level of Ajelp2 increased in recovering of organs in sea cucumber and showed it’s the highest expression level at the 15th day in the intestine and respiratory tree. Its expression then gradually decreased to normal levels. In the body wall, the expression level of Ajelp2 was up-regulated and then down-regulated. These results indicated that Ajelp2 is involved in protein regulation during the regeneration process in the sea cucumber A. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ajelp2 :

Elongator protein 2 of Apostichopus japonicus gene

AjELP2:

Elongator protein 2 of Apostichopus japonicus

A. japonicus :

Apostichopus japonicus

elp2 :

Elongator protein 2 gene

ELP2:

Elongator protein 2

NJ:

Neighbor-joining

ORF:

Open reading frame

SD:

Standard deviation

UTR:

Untranslated region

References

  1. Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59

    Article  CAS  PubMed  Google Scholar 

  2. Bryant SV, Endo T, Gardiner DM (2002) Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 46:887–896

    PubMed  Google Scholar 

  3. San Miguel-Ruiz JE, García-Arrarás JE (2007) Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Dev Biol 7:115

    Article  PubMed Central  PubMed  Google Scholar 

  4. García-Arrarás JE, Estrada-Rodgers L, Santiago R, Torres II, Díaz-Miranda L, Torres-Avillán I (1998) Cellular mechanisms of intestine regeneration in the seacucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J Exp Zoo 281:288–304

    Article  Google Scholar 

  5. García-Arrarás JE, Díaz-Miranda L, Torres LL, File S, Jiménez LB, Rivera-Bermudez K, Arroyo EJ, Cruz W (1999) Regeneration of the enteric nervous system in the sea cucumber Holothuria glaberrima. J Comp Neurol 406:461–475

    Article  PubMed  Google Scholar 

  6. Dubois P, Ameye L (2001) Regeneration of spines and pedicellarieae in echinoderms: a review. Microsc Res Tech 55:427–437

    Article  CAS  PubMed  Google Scholar 

  7. Roy S, Levesque M (2006) Limb regeneration in Axolotl: is it superhealing? TSW Dev Embryol 1(S1):12–15

    Article  Google Scholar 

  8. Martin P (1997) Wound healing- aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  9. Muneoka K, Bryant SV (1982) Evidence that patterning mechanisms in developing and regenerating limbs are the same. Nature 298:369–371

    Article  CAS  PubMed  Google Scholar 

  10. Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 11:781–795

    Google Scholar 

  11. Candia Carnevali MD, Bonasoro F, Biale A (1997) Pattern of bromodeoxyuridine incorporation in the advanced stages of arm regeneration in the feather star. Cell Tissue Res 289:363–374

    Article  CAS  PubMed  Google Scholar 

  12. Candia Carnevali MD, Bonasoro F (2001) Introduction to the biology of regeneration in echinoderms. Microsc Res Tech 55:365–368

    Article  CAS  PubMed  Google Scholar 

  13. Candia Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426

    Article  CAS  PubMed  Google Scholar 

  14. Ortiz-Pineda PA, Ramírez-Gómez F, Pérez-Ortiz J, González-Díaz S, Santiago-De FJ, Hernández-Pasos J, Valle-Avila CD, Rojas-Cartagena C, Suárez-Castillo EC, Tossas K, Méndez-Merced AT, Roig-López JL, Ortiz-Zuazaga H, García-Arrarás JE (2009) Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genom 10:262

    Article  Google Scholar 

  15. Yuan Z, Dahms HU, Han LL, Li QY, Zhang QZ, Wu RJ, Tan J, Zou XY, Hou L (2012) Cloning and characterization of a trypsin-like serine protease gene, a novel regeneration-related gene from Apostichopus japonicus. Gene 502:46–52

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Chen M, Yang H, Wang T, Liu B, Shu C, Gardiner DM (2011) Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol 6(2):195–205

    Google Scholar 

  17. Quiñones JL, Rosa R, Ruiz DL, García-Arrarás JE (2002) Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Dev Biol 250:181–197

    Article  PubMed  Google Scholar 

  18. VandenSpiegel D, Jangoux M, Flammang P (2000) Maintaining the line of defense: regeneration of Cuvierian tubules in the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Biol Bull 198:34–49

    Article  CAS  PubMed  Google Scholar 

  19. Kristjuhan A, Svejstrup JQ (2004) Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J 23:4243–4252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Versées W, Groeve SD, Lijsebettens MV (2010) Elongator, a conserved multitasking complex? Mol Microbiol 76:1065–1069

    Article  PubMed  Google Scholar 

  21. Nelissen H, Fleury D, Bruno L, Robles P, Veylder LD, Traas J, Micol JL, Montagu MV, Inzé D, Lijsebettens MV (2005) The elongata mutants identify a functional elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci USA 102:7754–7759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17:841–853

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z (2006) Mutations in ABO1/ELO2, a subunit of holo-elongator, in crease abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 26:6902–6912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V, Svejstrup JQ, Chariot A (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22:521–531

    Article  CAS  PubMed  Google Scholar 

  25. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez L, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell 136:551–564

    Article  CAS  PubMed  Google Scholar 

  26. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bauer F, Matsuyama A, Candiracci J, Dieu M, Scheliga J, Wolf DA, Yoshida M, Hermand D (2012) Translational control of cell division by elongator. Cell Rep 1:424–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Holmberg C, Katz S, Lerdrup M, Herdegen T, Jaattela M, Aronheim A, Kallunki T (2002) A novel specific role for I kappa B kinase complex-associated protein in cytosolic stress signaling. J Biol Chem 77:31918–31928

    Article  Google Scholar 

  29. Johansen LD, Naumanen T, Knudsen A, Westerlund N, Omova I, Nttila M, Elsen C, Ttzauw T, Lkovsky A, Stermarck J, Coffey ET, Jäättelä M, Kallunki T (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121:854–864

    Article  CAS  PubMed  Google Scholar 

  30. Svejstrup JQ (2007) Elongator complex: how many roles does it play? Curr Opin Cell Biol 19:331–336

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z (2013) The Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses. Plant Cell 25:762–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Krogan NJ, Greenblatt JF (2001) Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:8203–8212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230

    Article  CAS  PubMed  Google Scholar 

  34. de Hostos EL, Bradtke B, Lottspeich F, Guggenheim R, Gerisch G (1991) Coronin, an actin binding protein of Dictyostelium discoideumlocalized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J 10:4097–4104

    PubMed Central  PubMed  Google Scholar 

  35. Vaisman N, Tsouladze A, Robzyk K, Ben-Yehuda S, Kupiec M (1995) The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol Gen Genet 247:123–136

    Article  CAS  PubMed  Google Scholar 

  36. Pryer NK, Salama NR, Schekman R, Kaiser CA (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulumin vitro. J Cell Biol 120:865–875

    Article  CAS  PubMed  Google Scholar 

  37. Williams FE, Varanasi U, Trumbly RJ (1991) The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol 11:3307–3316

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Hoey T, Weinzierl RO, Gill G, Chen JL, Dynlacht BD (1993) Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260

    Article  CAS  PubMed  Google Scholar 

  39. Villamil MA, Liang Q, Zhuang Z (2013) The WD40-repeat protein-containing deubiquitinase complex: catalysis, regulation, and potential for therapeutic intervention. Cell Biochem Biophys 67:111–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Song JJ, Garlick JD, Kingston RE (2008) Structural basis of histone H4 recognition by p55. Genes Dev 22:1313–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Abdullah U, Cullen PJ (2009) The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeas. Eukaryot Cell 8:1362–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Defraia C, Mou Z (2011) The role of the elongator complex in plants. Plant Signal Behav 6:19–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Solinger JA, Paolinelli R, Klöss H, Scorza FB, Marchesi S, Sauder U, Mitsushima D, Capuani F, Stürzenbaum SR, Cassata G (2010) The Caenorhabditis elegans elongator complex regulates neuronal α-tubulin acetylation. PLoS Genet 6:e1000820

    Article  PubMed Central  PubMed  Google Scholar 

  44. Xia W, Xia L (2007) The morphological and histological observation of regeneration of alimentary tract in sea cucumber Apostichopus japonicus. J Dalian Fish Univ 22:340–346

    CAS  Google Scholar 

  45. García-Arrarás JE, Valentin-Tirado G, Flores JE, Rosa RJ (2011) Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima. BMC Dev Biol 11:61

    Article  PubMed Central  PubMed  Google Scholar 

  46. Dolmatov IY, Ginanova TT (2009) Post-autotomy regeneration of respiratory trees in the holothurian Apostichopus japonicus (Holothuroidea, Aspidochirotida). Cell Tissue Res 336:41–58

    Article  PubMed  Google Scholar 

  47. Wadman M (2005) Scar prevention: the healing touch. Nature 436:1079–1080

    Article  CAS  PubMed  Google Scholar 

  48. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  49. Dolmatov IY, Ginanova TT (2001) Muscle regeneration in holothurians. Microsc Res Tech 55:452–463

    Article  CAS  PubMed  Google Scholar 

  50. Glatt S, Müller CW (2013) Structural insights into elongator function. Curr Opin Struct Biol 23(2):235–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Liu Weidong of the Liaoning Ocean and Fisheries Science Research Institute for assistance with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Zou or Lin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Yao, F., Wu, Y. et al. Identification and expression of the elongator protein 2 (Ajelp2) gene, a novel regeneration-related gene from the sea cucumber Apostichopus japonicus . Mol Biol Rep 41, 4985–4996 (2014). https://doi.org/10.1007/s11033-014-3365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3365-5

Keywords

Navigation