Skip to main content
Log in

A trehalose-6-phosphate synthase gene from Saccharina japonica (Laminariales, Phaeophyceae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The full-length cDNA sequence of a trehalose-6-phosphate synthase gene from Saccharina japonica (designated as SjaTPS) (Accession: KC578568) was isolated based on homologous cloning and RACE-PCR. It was 4,127 bp, with 320 bp 5′-UTR, 21 bp 3′-UTR, and open reading frame (ORF) of 3,786 bp. The deduced 1,261 amino acids characterized with predicted molecular weight of 137.84 kDa and theoretical isoelectric point of 7.12. The SjaTPS had one N-terminal CBM20 (family 20 carbohydrate-binding module) domain, one TPS domain (trehalose-6-phosphate synthase) in the middle region and a single TPP (trehalose-6-phosphate phosphatase) domain near the C-terminus. Structural analysis suggested that the SjaTPS putatively functioned as trehalose-6-phosphate synthase, and might be related to laminaran metabolism in S. japonica. Homology analysis indicated that the SjaTPS shared 49–70 % similarities with the 13 known TPS sequences of other algae; only 55 % amino acid similarities were detected between SjaTPS and the previously reported TPS sequence of S. japonica (Accession: DQ666325). Phylogenetic analysis revealed close affinity between SjaTPS and TPS of brown alga Ectocarpus siliculosus (Accession: CBJ29609). Transcriptional analysis showed that desiccation greatly enhanced SjaTPS expression and the maximum appeared at 3 h, which was about 300-fold compared to that of the start, implied that SjaTPS was involved with drought adaption in kelp. In vitro expression of SjaTPS showed that one distinct band existed at ~115 kDa, and western blot detection proved that it was positive to the anti-His antibody with high specificity. Our results increased the knowledge of trehalose-6-phosphate synthase properties in S. japonica and also important for better understanding the role trehalose plays in kelp abiotic tolerance for adaption to the sublittoral habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  2. Elbein AD (1974) The metabolism of a, a-trehalose. Adv Carbohyd Chem Bi 30:227–256

    Article  CAS  Google Scholar 

  3. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  PubMed  Google Scholar 

  4. Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  5. Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Article  CAS  PubMed  Google Scholar 

  6. Bonini BM, Van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, Van Dijck P, Thevelein JM (2000) Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350:261–268

    Article  CAS  PubMed  Google Scholar 

  7. Noubhani A, Bunoust O, Rigoulet M, Thevelein JM (2000) Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267:4566–45576

    Article  CAS  PubMed  Google Scholar 

  8. Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  CAS  PubMed  Google Scholar 

  9. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R

    Article  CAS  PubMed  Google Scholar 

  10. Cabib E, Leloir LF (1958) The biosynthesis of trehalose-6-phosphate. J Biol Chem 231:259–275

    CAS  PubMed  Google Scholar 

  11. Giaever HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Strøm AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    Article  PubMed  Google Scholar 

  13. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermo protectant. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  14. Blazquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689

    Article  CAS  PubMed  Google Scholar 

  15. Vandesteene L, Ramon M, Roy KL, Van Dijck P, Rolland F (2010) A single active trehalose-6-phosphate synthase (TPS) and a family of putative regulatory TPS-like protein in Arabidopsis thaliana. Mol Plant 3:406–419

    Article  CAS  PubMed  Google Scholar 

  16. Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga GA (1999) Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    Article  CAS  PubMed  Google Scholar 

  18. Cai Z, Peng G, Liu Y, Cao Y, Jin K, Xia Y (2009) Trehalose-6-phosphate synthase 1 from Metarhizium anisopliae: clone, expression and properties of recombinants. J Biosci Bioeng 107:499–505

    Article  CAS  PubMed  Google Scholar 

  19. Wang G, Zhao G, Feng Y, Xuan J, Sun J, Guo B, Jiang G, Weng M, Yao J, Wang B, Duan D, Liu T (2010) Cloning and comparative studies of seaweed trehalose-6-phosphate synthase gene. Mar Drugs 8:2065–2079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xuan J, Feng Y, Weng M, Zhao G, Shi J, Yao J, Wang X, Guo B, Qiao L, Duan D, Wang B (2012) Expressed sequence tag analysis and cloning of trehalose-6-phosphate synthase gene from marine alga Laminaria japonica (Phaeophyta). Acta Oceanol Sinica 31(6):1–10

    Article  Google Scholar 

  21. Cock JM, Streck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Segurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  22. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  23. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, Mcginnis K, Medlin LK, Montsant A, Oudot-Le Secq M-P, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, Von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  24. Yao JT, Fu WD, Wang XL, Duan DL (2009) Improved RNA isolation for Laminaria japonica Aresch (Laminariaceae, Phaeophyta). J Appl Phycol 21:233–238

    Article  CAS  Google Scholar 

  25. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New Jersey

    Google Scholar 

  27. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  28. Krogh A, Larsson B, von Heijne B, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  29. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  30. Deng Y, Yao J, Wang X, Guo H, Duan D (2012) Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS ONE 7(6):e39704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal biochem 285:194–204

    Article  CAS  PubMed  Google Scholar 

  32. Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  Google Scholar 

  33. Leyman B, Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    Article  CAS  PubMed  Google Scholar 

  34. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50(10):1223–1229

    Article  CAS  PubMed  Google Scholar 

  35. Penninga D, van der Veen BA, Knegtel RMA, van Hijum SAFT, Rozeboom HJ, Kalk KH, Dijkstra BW, Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271:32777–32784

    Article  CAS  PubMed  Google Scholar 

  36. Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5:647–661

    Article  CAS  PubMed  Google Scholar 

  37. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  Google Scholar 

  38. Eastmond PJ, Li Y, Graham IA (2003) Is trehalose-6-phosphate a regulator of sugar metabolism in plants? J Exp Bot 54:533–537

    Article  CAS  PubMed  Google Scholar 

  39. Thaller MC, Schippa S, Rossolini GM (1988) Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci 7:1647–1652

    Article  Google Scholar 

  40. Collet JF, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX (T/V) motif. J Biol Chem 273:14107–14112

    Article  CAS  PubMed  Google Scholar 

  41. Fieulaine S, Lunn JE, Ferrer JL (2005) The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17:2049–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034

    Article  CAS  PubMed  Google Scholar 

  43. Collén J, Guisle-Marsollier I, Leger JJ, Boyen C (2007) Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol 176:45–55

    Article  PubMed  Google Scholar 

  44. Dittami SM, Scornet D, Petit J, Ségurens B, Silva CD, Corre E, Dondrup M, Glatting K, König R, Sterck L, Rouzé P, Van de Peer Y, Cock JM, Boyen C, Tonon T (2009) Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 10:R66

    Article  PubMed Central  PubMed  Google Scholar 

  45. Adams RP, Kendall E, Kartha KK (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18:107–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (No. 40976085) and Shandong Agriculture Breeding Engineering Biological Resources Innovation of Research Project and National High Tech 863 Project (2012AA10A406). Sincerely thanks are due to Lin Xiao, Jin Zhao, Ge Liu for their help with the experiments. The authors acknowledged the anonymous reviewers for the critical comments and suggestions for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Wang, X., Guo, H. et al. A trehalose-6-phosphate synthase gene from Saccharina japonica (Laminariales, Phaeophyceae). Mol Biol Rep 41, 529–536 (2014). https://doi.org/10.1007/s11033-013-2888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2888-5

Keywords

Navigation