Skip to main content
Log in

S100A16 inhibits osteogenesis but stimulates adipogenesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have the capacity to differentiate into osteoblasts and adipocytes. Bone marrow adipogenesis exerts an inhibitory effect on osteogenesis, which leads to osteoporosis. S100A16, a novel member of the S100 family, is ubiquitously expressed, and markedly enhances adipogenesis. The aim of this study was to demonstrate, in the mouse BM-MSC model, whether S100A16 significantly stimulates adipogenic, rather than osteogenic differentiation. The overexpression of S100A16 led to a significant increase in Oil Red O staining (a marker of adipocyte differentiation) but a decrease in Alizarin Red S staining (a marker of osteoblast differentiation). In contrast, reducing the expression of S100A16 resulted in minimal Oil Red O staining but increased Alizarin Red S staining. During differentiation into osteoblasts, RUNX2 expression increased fourfold in the S100A16KO+/− BM-MSCs, but only increased by approximately 1.5-fold in the S100A16TG+/+ BM-MSCs. And BMP2 occurred in the same changes. Upon induction of BM-MSC differentiation into adipocytes, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α expression were significantly higher in the cells overexpressing S100A16 protein but lower in the cells with reduced expression of S100A16 protein, compared with the control cells, which were BM-MSCs derived from C57/BL6. S100A16 increased PPARγ promoter luciferase activity and decreased RUNX2 promoter luciferase activity. ERK1/2 phosphorylation was stimulated during osteogenesis, whereas p-JNK phosphorylation was increased by stimulation of adipogenesis. Our results suggest that S100A16 inhibits osteogenesis but stimulates adipogenesis by increasing the transcription of PPARγ and decreasing the transcription of RUNX2. The ERK1/2 pathway is involved in the regulation of osteogenesis whereas the JNK pathway is involved in adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen-Solal M, de Vernejoul MC (2003) Bone remodeling. Therapie 58(5):391–393

    Article  PubMed  Google Scholar 

  2. LB Eriksen EF, Langdahl BL (1997) The pathogenesis of osteoporosis. Horm Res 48(Suppl 5):78–82

    Article  Google Scholar 

  3. Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F, Terzioglu-Kara E, Durdu S, Ozyurda U, Ugur M, Akcali KC (2009) Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells: a perspective for emergencies. Can J Physiol Pharmacol 87(2):143–150

    Article  PubMed  CAS  Google Scholar 

  4. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, Zhao X, Liu K (2011) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep 38(8):5161–5168

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Y, Zhou P, Kimondo JW (2012) Adiponectin and osteocalcin: relation to insulin sensitivity. Biochem Cell Biol 90(5):613–620

    Article  PubMed  CAS  Google Scholar 

  6. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316

    Article  PubMed  CAS  Google Scholar 

  7. Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21(12):3197–3207

    Article  PubMed  CAS  Google Scholar 

  8. Kondo T, Johnson SA, Yoder MC, Romand R, Hashino E (2005) Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A 102(13):4789–4794

    Article  PubMed  CAS  Google Scholar 

  9. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78(3):783–809

    PubMed  CAS  Google Scholar 

  10. Chen C, UIudag H, Wang Z, Jiang H (2012) Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. J Cell Biochem. doi:10.1002/jcb.24240

  11. Smith KE, Huang Z, Ma T, Irani A, Lane Smith R, Goodman SB (2011) Molecular profile of osteoprogenitor cells seeded on allograft bone. J Tissue Eng Regen Med 5(9):704–711

    Article  PubMed  CAS  Google Scholar 

  12. Nathan SS, Pereira BP, Zhou YF, Gupta A, Dombrowski C, Soong R, Pho RW, Stein GS, Salto-Tellez M, Cool SM, van Wijnen AJ (2009) Elevated expression of Runx2 as a key parameter in the etiology of osteosarcoma. Mol Biol Rep 36(1):153–158

    Article  PubMed  CAS  Google Scholar 

  13. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322(4):1111–1122

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Zhang R, Xin J, Sun Y, Li J, Wei D, Zhao AZ (2011) Identification of S100A16 as a novel adipogenesis promoting factor in 3T3-L1 cells. Endocrinology 152(3):903–911

    Article  PubMed  CAS  Google Scholar 

  15. Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, Chun JM, Lee SK, Kim SJ (2008) Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc 40(8):2649–2654

    Article  PubMed  CAS  Google Scholar 

  16. Oei L, Rivadeneira F, Ly F, Breda SJ, Zillikens MC, Hofman A, Uitterlinden AG, Krestin GP, Oei EH (2012) Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings. Eur Radiol. Epub ahead of print

  17. Zhang JF, Li G, Meng CL, Dong Q, Chan CY, He ML, Leung PC, Zhang YO, Kung HF (2009) Total flavonoids of Herba Epimedii improves osteogenesis and inhibits osteoclastogenesis of human mesenchymal stem cells. Phytomedicine 16(6–7):521–529

    Article  PubMed  CAS  Google Scholar 

  18. Delorme B, Chateauvieux S, Charbord P (2006) The concept of mesenchymal stem cells. Regen Med 1(4):497–509

    Article  PubMed  CAS  Google Scholar 

  19. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43

    Article  PubMed  CAS  Google Scholar 

  20. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, Glowacki J (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  PubMed  CAS  Google Scholar 

  21. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  22. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Wan C, Gilbert SR, Clemens TL (2007) Oxygen sensing and osteogenesis. Ann N Y Acad Sci 1117:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Duque G, Troen BR (2008) Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 56(5):935–941

    Article  PubMed  Google Scholar 

  25. Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ (2000) Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone 26(5):485–489

    Article  PubMed  CAS  Google Scholar 

  26. Musacchio E, Priante G, Budakovic A, Baggio B (2007) Effects of unsaturated free fatty acids on adhesion and on gene expression of extracellular matrix macromolecules in human osteoblast-like cell cultures. Connect Tissue Res 48(1):34–38

    Article  PubMed  CAS  Google Scholar 

  27. Lecka-Czernik B (2006) PPARs and bone metabolism. PPAR Res 2006:18089

    PubMed  Google Scholar 

  28. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266

    Article  PubMed  CAS  Google Scholar 

  29. Akune T, Ogata N, Hoshi K, Kubota N, Terauchi Y, Tobe K, Takagi H, Azuma Y, Kadowaki T, Nakamura K, Kawaguchi H (2002) Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 159(1):147–156

    Article  PubMed  CAS  Google Scholar 

  30. Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13(12):1496–1503

    Article  PubMed  CAS  Google Scholar 

  31. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148(6):2669–2680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81270952, 81070684) and the Jiangsu Province’s Key Provincial Talents Program (BE 2011802), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the special scientific research project from the Ministry of health, China (No. 201002002), the Projects in the Jiangsu Science & Technology Pillar Program (BE 2011802).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, R., Zhu, W. et al. S100A16 inhibits osteogenesis but stimulates adipogenesis. Mol Biol Rep 40, 3465–3473 (2013). https://doi.org/10.1007/s11033-012-2413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2413-2

Keywords

Navigation