Skip to main content
Log in

The joint effect of cigarette smoking and polymorphisms on LRP5, LEPR, near MC4R and SH2B1 genes on metabolic syndrome susceptibility in Taiwan

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Metabolic syndrome (MetS) is a combination of medical disorders, consisting of multiple, interrelated risk factors of metabolic origin. To investigate the associations of MetS with appetite-related genes (LEPR, near MC4R and SH2B1) and cholesterol metabolism-related gene (LRP5) polymorphism variants and the joint effect of cigarette smoking and these polymorphism variants on MetS in a community-based case–control study. Metabolic syndrome was defined according to the American Heart Association and National Heart Lung Blood Institute (AHA/NHLBI) criteria. A total of 237 MetS cases and 202 subjects without MetS aged 40 or over in Taiwan were analyzed. The genotypes of LRP5-rs3736228, LEPR-rs1137100, near MC4R-rs17782313 and SH2B1-rs4788102 were analyzed by the PCR–restriction fragment length polymorphism method. A strong association of the SNP rs17782313 near MC4R gene with MetS susceptibility was found. The data indicated that the C allele of near MC4R-rs17782313 is an obvious risk factor for MetS susceptibility. The joint effects of cigarette smoking and susceptible genotypes of LRP5, LEPR, near MC4R or SH2B1 genes led to a relatively higher risk of having MetS. Using subjects with the wild-type of LRP5, LEPR, near MC4R or SH2B1 genes and without a smoking habit as a reference group, those with cigarette smoking (current and former) and more than one variant type had a 4.1-fold (95 % CI = 1.6–10.2) risk of having MetS. The genotypes of the appetite-related genes (LEPR, near MC4R and SH2B1) and cholesterol metabolism-related gene (LRP5), together with a cigarette smoking habit, are important risk factors for MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

α-MSH:

α-Melanocyte-stimulating hormone

BMI:

Body mass index

CI:

Confidence intervals

CNS:

Central nervous system

CVD:

Cardiovascular diseases

GLM:

General linear model

HOMA:

Homeostasis model assessment

LDL:

Low density lipoprotein

LEPR:

Leptin receptor

LRP5:

LDL receptor-related protein 5

MC3R:

Melanocortin-3 receptors

MC4R:

Melanocortin-4 receptors

MetS:

Metabolic syndrome

OR:

Odds ratio

POMC:

Pro-opiomelanocortin

SD:

Standard deviation

SH2B1:

Src homology 2 B adaptor protein 1

SNP:

Single nucleotide polymorphisms

References

  1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–2752

    Article  PubMed  Google Scholar 

  2. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB (2005) Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112(20):3066–3072

    Article  PubMed  CAS  Google Scholar 

  3. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    Article  PubMed  Google Scholar 

  4. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE (1993) Genetic and environmental influences on serum lipid levels in twins. N Engl J Med 328(16):1150–1156

    Article  PubMed  CAS  Google Scholar 

  5. Hong Y, Pedersen NL, Brismar K, Hall K, de Faire U (1996) Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins. J Clin Endocrinol Metab 81(5):1791–1797

    Article  PubMed  CAS  Google Scholar 

  6. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141

    Article  PubMed  CAS  Google Scholar 

  7. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168

    Article  PubMed  CAS  Google Scholar 

  8. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770

    Article  PubMed  CAS  Google Scholar 

  9. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    Article  PubMed  CAS  Google Scholar 

  10. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392(6674):398–401

    Article  PubMed  CAS  Google Scholar 

  11. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez-Fernandez J, Ferraz-Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O’Rahilly S (2007) Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 356(3):237–247. doi:10.1056/NEJMoa063988

    Article  PubMed  CAS  Google Scholar 

  12. Sun Q, Cornelis MC, Kraft P, Qi L, van Dam RM, Girman CJ, Laurie CC, Mirel DB, Gong H, Sheu CC, Christiani DC, Hunter DJ, Mantzoros CS, Hu FB (2010) Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels. Hum Mol Genet 19(9):1846–1855. doi:10.1093/hmg/ddq056

    Article  PubMed  CAS  Google Scholar 

  13. Saukko M, Kesaniemi YA, Ukkola O (2010) Leptin receptor Lys109Arg and Gln223Arg polymorphisms are associated with early atherosclerosis. Metab Syndr Relat D 8(5):425–430. doi:10.1089/met.2010.0004

    Article  Google Scholar 

  14. Tabassum R, Mahendran Y, Dwivedi OP, Chauhan G, Ghosh S, Marwaha RK, Tandon N, Bharadwaj D (2012) Common variants of IL6, LEPR, and PBEF1 are associated with obesity in Indian children. Diabetes 61(3):626–631. doi:10.2337/db11-1501

    Article  PubMed  CAS  Google Scholar 

  15. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21(1):119–122

    Article  PubMed  CAS  Google Scholar 

  16. Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L (2007) Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest 117(2):397–406

    Article  PubMed  CAS  Google Scholar 

  17. Stutzmann F, Cauchi S, Durand E, Calvacanti-Proenca C, Pigeyre M, Hartikainen AL, Sovio U, Tichet J, Marre M, Weill J, Balkau B, Potoczna N, Laitinen J, Elliott P, Jarvelin MR, Horber F, Meyre D, Froguel P (2009) Common genetic variation near MC4R is associated with eating behaviour patterns in European populations. Int J Obes (Lond) 33(3):373–378. doi:10.1038/ijo.2008.279

    Article  CAS  Google Scholar 

  18. Kim DH, Inagaki Y, Suzuki T, Ioka RX, Yoshioka SZ, Magoori K, Kang MJ, Cho Y, Nakano AZ, Liu Q, Fujino T, Suzuki H, Sasano H, Yamamoto TT (1998) A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J Biochem 124(6):1072–1076

    Article  PubMed  CAS  Google Scholar 

  19. Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto TT (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Nat Acad Sci USA 100(1):229–234

    Article  PubMed  CAS  Google Scholar 

  20. Jiang XY, Chen Y, Xu L, Li X, Cao FF, Li L, Lu M, Jin L, Wang XF (2010) Association of LPR5 polymorphism with bone mass density and cholesterol level in population of Chinese Han. Exp Clin Endocrinol Diabetes 118(6):388–391. doi:10.1055/s-0029-1225613

    Article  PubMed  CAS  Google Scholar 

  21. Facchini FS, Hollenbeck CB, Jeppesen J, Chen YD, Reaven GM (1992) Insulin resistance and cigarette smoking. Lancet 339(8802):1128–1130

    Article  PubMed  CAS  Google Scholar 

  22. Ronnemaa T, Ronnemaa EM, Puukka P, Pyorala K, Laakso M (1996) Smoking is independently associated with high plasma insulin levels in nondiabetic men. Diabetes Care 19(11):1229–1232

    Article  PubMed  CAS  Google Scholar 

  23. Kannel WB (1981) Update on the role of cigarette smoking in coronary artery disease. Am Heart J 101(3):319–328

    Article  PubMed  CAS  Google Scholar 

  24. Ferrannini E (1997) Insulin resistance is central to the burden of diabetes. Diabetes Metab Rev 13(2):81–86

    Article  PubMed  CAS  Google Scholar 

  25. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    Article  PubMed  CAS  Google Scholar 

  26. Lin CC, Liu CS, Li TC, Chen CC, Li CI, Lin WY (2007) Microalbuminuria and the metabolic syndrome and its components in the Chinese population. Eur J Clin Invest 37(10):783–790. doi:10.1111/j.1365-2362.2007.01865.x

    Article  PubMed  CAS  Google Scholar 

  27. Lin CC, Liu CS, Lai MM, Li CI, Chen CC, Chang PC, Lin WY, Lee YD, Lin T, Li TC (2007) Metabolic syndrome in a Taiwanese metropolitan adult population. BMC Public Health 7:239. doi:10.1186/1471-2458-7-239

    Article  PubMed  Google Scholar 

  28. Lin WY, Liu CS, Li TC, Lin T, Chen W, Chen CC, Li CI, Lin CC (2008) In addition to insulin resistance and obesity, hyperuricemia is strongly associated with metabolic syndrome using different definitions in Chinese populations: a population-based study (Taichung Community Health Study). Ann Rheum Dis 67(3):432–433. doi:10.1136/ard.2007.073601

    Article  PubMed  Google Scholar 

  29. Lin WY, Lai MM, Li CI, Lin CC, Li TC, Chen CC, Lin T, Liu CS (2009) In addition to insulin resistance and obesity, brachial-ankle pulse wave velocity is strongly associated with metabolic syndrome in Chinese—a population-based study (Taichung Community Health Study, TCHS). J Atheroscler Thromb 16(2):105–112. doi:JST.JSTAGE/jat/E603

    Article  PubMed  Google Scholar 

  30. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  PubMed  CAS  Google Scholar 

  31. Qi L, Kraft P, Hunter DJ, Hu FB (2008) The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet 17(22):3502–3508

    Article  PubMed  CAS  Google Scholar 

  32. Yamada Y, Ichihara S, Kato K, Yoshida T, Yokoi K, Matsuo H, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, Yasunaga A, Park H, Tanaka M, Lee W, Nozawa Y (2008) Genetic risk for metabolic syndrome: examination of candidate gene polymorphisms related to lipid metabolism in Japanese people. J Med Genet 45(1):22–28

    Article  PubMed  CAS  Google Scholar 

  33. Phillips CM, Goumidi L, Bertrais S, Field MR, Ordovas JM, Cupples LA, Defoort C, Lovegrove JA, Drevon CA, Blaak EE, Gibney MJ, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM (2010) Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults. J Nutr 140(2):238–244

    Article  PubMed  CAS  Google Scholar 

  34. Chen CC, Li TC, Chang PC, Liu CS, Lin WY, Wu MT, Li CI, Lai MM, Lin CC (2008) Association among cigarette smoking, metabolic syndrome, and its individual components: the metabolic syndrome study in Taiwan. Metabolism: clinical and experimental 57(4):544–548

    Article  CAS  Google Scholar 

  35. Oh SW, Yoon YS, Lee ES, Kim WK, Park C, Lee S, Jeong EK, Yoo T (2005) Association between cigarette smoking and metabolic syndrome: the Korea National Health and Nutrition Examination Survey. Diabetes Care 28(8):2064–2066

    Article  PubMed  Google Scholar 

  36. Takeuchi T, Nakao M, Nomura K, Yano E (2009) Association of metabolic syndrome with smoking and alcohol intake in Japanese men. Nicotine Tob Res 11(9):1093–1098

    Article  PubMed  CAS  Google Scholar 

  37. Ishizaka N, Ishizaka Y, Toda E, Nagai R, Yamakado M (2007) Association between cigarette smoking, white blood cell count, and metabolic syndrome as defined by the Japanese criteria. Intern Med (Tokyo, Japan) 46(15):1167–1170

    Article  Google Scholar 

  38. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, Balding D, Scott J, Kooner JS (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40(6):716–718

    Article  PubMed  CAS  Google Scholar 

  39. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, Inouye M, Freathy RM, Attwood AP, Beckmann JS, Berndt SI, Jacobs KB, Chanock SJ, Hayes RB, Bergmann S, Bennett AJ, Bingham SA, Bochud M, Brown M, Cauchi S, Connell JM, Cooper C, Smith GD, Day I, Dina C, De S, Dermitzakis ET, Doney AS, Elliott KS, Elliott P, Evans DM, Sadaf Farooqi I, Froguel P, Ghori J, Groves CJ, Gwilliam R, Hadley D, Hall AS, Hattersley AT, Hebebrand J, Heid IM, Lamina C, Gieger C, Illig T, Meitinger T, Wichmann HE, Herrera B, Hinney A, Hunt SE, Jarvelin MR, Johnson T, Jolley JD, Karpe F, Keniry A, Khaw KT, Luben RN, Mangino M, Marchini J, McArdle WL, McGinnis R, Meyre D, Munroe PB, Morris AD, Ness AR, Neville MJ, Nica AC, Ong KK, O’Rahilly S, Owen KR, Palmer CN, Papadakis K, Potter S, Pouta A, Qi L, Randall JC, Rayner NW, Ring SM, Sandhu MS, Scherag A, Sims MA, Song K, Soranzo N, Speliotes EK, Syddall HE, Teichmann SA, Timpson NJ, Tobias JH, Uda M, Vogel CI, Wallace C, Waterworth DM, Weedon MN, Willer CJ, Wraight, Yuan X, Zeggini E, Hirschhorn JN, Strachan DP, Ouwehand WH, Caulfield MJ, Samani NJ, Frayling TM, Vollenweider P, Waeber G, Mooser V, Deloukas P, McCarthy MI, Wareham NJ, Barroso I, Jacobs KB, Chanock SJ, Hayes RB, Lamina C, Gieger C, Illig T, Meitinger T, Wichmann HE, Kraft P, Hankinson SE, Hunter DJ, Hu FB, Lyon HN, Voight BF, Ridderstrale M, Groop L, Scheet P, Sanna S, Abecasis GR, Albai G, Nagaraja R, Schlessinger D, Jackson AU, Tuomilehto J, Collins FS, Boehnke M, Mohlke KL (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40(6):768–775

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from China Medical University Hospital (DMR98-088) and the National Science Council of Taiwan (NSC93-2314-B-039-025&NSC94-2314-B-039-024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsai-Chung Li or Cheng-Chieh Lin.

Additional information

Chia-Ing Li equally contributed as first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CW., Li, CI., Liu, CS. et al. The joint effect of cigarette smoking and polymorphisms on LRP5, LEPR, near MC4R and SH2B1 genes on metabolic syndrome susceptibility in Taiwan. Mol Biol Rep 40, 525–533 (2013). https://doi.org/10.1007/s11033-012-2089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2089-7

Keywords

Navigation