Skip to main content
Log in

Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose γ-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate γ-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Preston RJ (2003) The LNT model is the best we can do—today. J Radiol Prot 23(3):263–268

    Article  PubMed  Google Scholar 

  2. Little MP, Muirhead CR (2000) Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int J Radiat Biol 76(7):939–953

    Article  PubMed  CAS  Google Scholar 

  3. Chaudhry MA, Kreger B, Omaruddin RA (2010) Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int J Radiat Biol 86(7):569–583

    Article  PubMed  CAS  Google Scholar 

  4. Tubiana M, Aurengo A, Averbeck D, Masse R (2006) Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship. Radiat Environ Biophys 44(4):245–251

    Article  PubMed  CAS  Google Scholar 

  5. Averbeck D (2010) Non-targeted effects as a paradigm breaking evidence. Mutat Res 687(1–2):7–12

    PubMed  CAS  Google Scholar 

  6. Huang L, Kim PM, Nickoloff JA, Morgan WF (2007) Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells. Cancer Res 67(3):1099–1104

    Article  PubMed  CAS  Google Scholar 

  7. Murnane JP, Sabatier L (2004) Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26(11):1164–1174

    Article  PubMed  CAS  Google Scholar 

  8. Wolff S (1998) The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect 106(Suppl 1):277–283

    Article  PubMed  Google Scholar 

  9. Azzam EI, Little JB (2004) The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol 23(2):61–65

    Article  PubMed  Google Scholar 

  10. Rigaud O, Moustacchi E (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat Res 358(2):127–134

    Article  PubMed  Google Scholar 

  11. de Toledo SM, Azzam EI (2006) Adaptive and bystander responses in human and rodent cell cultures exposed to low level ionizing radiation: the impact of linear energy transfer. Dose Response 4(4):291–301

    Article  PubMed  Google Scholar 

  12. de Toledo SM, Asaad N, Venkatachalam P, Li L, Howell RW, Spitz DR, Azzam EI (2006) Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 166(6):849–857

    Article  PubMed  Google Scholar 

  13. Gaillard S, Pusset D, de Toledo SM, Fromm M, Azzam EI (2009) Propagation distance of the alpha-particle-induced bystander effect: the role of nuclear traversal and gap junction communication. Radiat Res 171(5):513–520

    Article  PubMed  CAS  Google Scholar 

  14. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23(3–4):311–322

    Article  PubMed  CAS  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  16. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    Article  PubMed  CAS  Google Scholar 

  17. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309(5740):1573–1576

    Article  PubMed  CAS  Google Scholar 

  18. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  PubMed  CAS  Google Scholar 

  19. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  Google Scholar 

  20. Chaudhry MA (2009) Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother Radiopharm 24(1):49–56

    Article  PubMed  CAS  Google Scholar 

  21. Chaudhry MA, Kreger B, Omaruddin RA (2010) Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int J Radiat Biol 86:569–583

    Article  PubMed  CAS  Google Scholar 

  22. Chaudhry MA, Sachdeva H, Omaruddin RA (2010) Radiation-induced Micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol 29(9):553–561

    Article  PubMed  CAS  Google Scholar 

  23. Goddu SM, Howell RW, Rao DV (2001) Method and means for variably attenuating radiation. United States Patent US 6,201,852 B1

  24. Howell RW, Goddu SM, Rao DV (1997) Design and performance characteristics of an experimental Cs-137 irradiator to simulate internal radionuclide dose rate patterns. J Nucl Med 38:727–731

    PubMed  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  26. Bagley J, Rosenzweig M, Marks DF, Pykett MJ (1999) Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp Hematol 27(3):496–504

    Article  PubMed  CAS  Google Scholar 

  27. Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH, Hartman KE, Brander C, Meyer TH, Pykett MJ, Chabner KT, Kalams SA, Rosenzweig M, Scadden DT (2000) Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol 18(7):729–734

    Article  PubMed  CAS  Google Scholar 

  28. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  PubMed  CAS  Google Scholar 

  29. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756

    Article  PubMed  CAS  Google Scholar 

  30. Goodsell DS (1999) The molecular perspective: the ras oncogene. Oncologist 4(3):263–264

    PubMed  CAS  Google Scholar 

  31. Yaguang Xi JRE, Jingfang Ju (2007) Investigation of miRNA Biology by bioinformatic tools and impact of miRNAs in colorectal cancer—regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform 3:245–253

    PubMed  Google Scholar 

  32. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  CAS  Google Scholar 

  33. Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109(3):321–334

    Article  PubMed  CAS  Google Scholar 

  34. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  PubMed  CAS  Google Scholar 

  35. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  36. Akerman GS, Rosenzweig BA, Domon OE, Tsai CA, Bishop ME, McGarrity LJ, Macgregor JT, Sistare FD, Chen JJ, Morris SM (2005) Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. Environ Mol Mutagen 45(2–3):188–205

    Article  PubMed  CAS  Google Scholar 

  37. Chung EY, Dews M, Cozma D, Yu D, Wentzel EA, Chang TC, Schelter JM, Cleary MA, Mendell JT, Thomas-Tikhonenko A (2008) c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol Ther 7(11):1758–1764

    Article  PubMed  CAS  Google Scholar 

  38. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102(10):3627–3632

    Article  PubMed  CAS  Google Scholar 

  39. Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Kuffer S, Maertens S, Eils R, Grone HJ, Gretz N, Brors B (2006) Argonaute—a database for gene regulation by mammalian microRNAs. Nucleic Acids Res 34(Database issue):D115–D118

    Article  PubMed  CAS  Google Scholar 

  40. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  PubMed  CAS  Google Scholar 

  41. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    PubMed  CAS  Google Scholar 

  42. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  PubMed  CAS  Google Scholar 

  43. Cha HJ, Seong KM, Bae S, Jung JH, Kim CS, Yang KH, Jin YW, An S (2009) Identification of specific microRNAs responding to low and high dose gamma-irradiation in the human lymphoblast line IM9. Oncol Rep 22(4):863–868

    PubMed  CAS  Google Scholar 

  44. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136

    Article  PubMed  CAS  Google Scholar 

  45. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  PubMed  CAS  Google Scholar 

  46. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  PubMed  CAS  Google Scholar 

  47. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    Article  PubMed  CAS  Google Scholar 

  48. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    Article  PubMed  CAS  Google Scholar 

  49. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M (2008) MicroRNA-21 targets sprouty2 and promotes cellular outgrowths. Mol Biol Cell

  50. Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, Cheng JF, Chen DJ (2005) Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res 164(1):17–26

    Article  PubMed  CAS  Google Scholar 

  51. Long XH, Zhao ZQ, He XP, Wang HP, Xu QZ, An J, Bai B, Sui JL, Zhou PK (2007) Dose-dependent expression changes of early response genes to ionizing radiation in human lymphoblastoid cells. Int J Mol Med 19(4):607–615

    PubMed  CAS  Google Scholar 

  52. Fujimori A, Okayasu R, Ishihara H, Yoshida S, Eguchi-Kasai K, Nojima K, Ebisawa S, Takahashi S (2005) Extremely low dose ionizing radiation up-regulates CXC chemokines in normal human fibroblasts. Cancer Res 65(22):10159–10163

    Article  PubMed  CAS  Google Scholar 

  53. Fachin AL, Mello SS, Sandrin-Garcia P, Junta CM, Donadi EA, Passos GA, Sakamoto-Hojo ET (2007) Gene expression profiles in human lymphocytes irradiated in vitro with low doses of gamma rays. Radiat Res 168(6):650–665

    Article  PubMed  CAS  Google Scholar 

  54. Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, Fornace AJ Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452

    PubMed  CAS  Google Scholar 

  55. Sugihara T, Magae J, Wadhwa R, Kaul SC, Kawakami Y, Matsumoto T, Tanaka K (2004) Dose and dose-rate effects of low-dose ionizing radiation on activation of Trp53 in immortalized murine cells. Radiat Res 162(3):296–307

    Article  PubMed  CAS  Google Scholar 

  56. Gridley DS, Pecaut MJ, Rizvi A, Coutrakon GB, Luo-Owen X, Makinde AY, Slater JM (2009) Low-dose, low-dose-rate proton radiation modulates CD4(+) T cell gene expression. Int J Radiat Biol 85(3):250–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DNA Analysis Facility, University of Vermont for assistance with the real-time PCR experiments. This work was funded by a grant to MAC from College of Nursing and Health Sciences, University of Vermont. Grants from the US Department of Energy Low Dose Radiation Research Program, NASA and the NIH supported research in EIA laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmad Chaudhry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhry, M.A., Omaruddin, R.A., Kreger, B. et al. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation. Mol Biol Rep 39, 7549–7558 (2012). https://doi.org/10.1007/s11033-012-1589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1589-9

Keywords

Navigation