Skip to main content
Log in

Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5′ untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3′ UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    Article  PubMed  CAS  Google Scholar 

  2. Wang R, Sperry AO (2008) Identification of a novel leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 9:9

    Article  PubMed  Google Scholar 

  3. Zhu JQ, Yang WX, You ZJ, Jiao HF (2005) The ultrastructure of the spermatozoon of Octopus tankahkeei. J Shellfish Res 24:1203–1207

    Google Scholar 

  4. Zhu JQ, Yang WX, You ZJ, Wang W, Jiao HF (2006) Ultrastructure of spermatogenesis of Octopus tankahkeei. J Fish China 30:161–169

    Article  Google Scholar 

  5. Jiao HF, You ZJ, Wang YN (2008) Study on the foundational biological character of Octopus tankahkeei. Acta Oceanol Sinica 5:90–95

    Google Scholar 

  6. Li Z, Zhu JQ, Yang WX (2010) Acrosome reaction in Octopus tankahkeei induced by calcium ionophore A23187 and a possible role of the acrosomal screw. Micron 41:39–46

    Article  PubMed  Google Scholar 

  7. Yu HM, Wang W, Zhu JQ, Yang WX (2010) Analysis on dynamic distribution and function of microtubule during Octopus tankahkeei spermiogenesis. Chin Cell Biol 32:251–255

    Google Scholar 

  8. Berezuk MA, Schroer TA (2004) Fractionation and characterization of kinesin II species in vertebrate brain. Traffic 5:503–513

    Article  PubMed  CAS  Google Scholar 

  9. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  PubMed  CAS  Google Scholar 

  10. Hirokawa N (2000) Stirring up development with the heterotrimeric kinesin KIF3. Traffic 1:29–34

    Article  PubMed  CAS  Google Scholar 

  11. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  PubMed  CAS  Google Scholar 

  12. Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496:142–150

    Article  PubMed  CAS  Google Scholar 

  13. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    Article  PubMed  CAS  Google Scholar 

  14. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004–7011

    Article  PubMed  CAS  Google Scholar 

  15. Navone F, Consalez GG, Sardella M, Caspani E, Pozzoli O, Frassoni C, Morlacchi E, Sitia R, Sprocati T, Cabibbo A (2001) Expression of KIF3C kinesin during neural development and in vitro neuronal differentiation. J Neurochem 77:741–753

    Article  PubMed  CAS  Google Scholar 

  16. Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N (1992) Kinesin family in murine central nervous system. J Cell Biol 119:1287–1296

    Article  PubMed  CAS  Google Scholar 

  17. Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T, Scholey JM (1993) Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366:268–270

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1995) KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 130:1387–1399

    Article  PubMed  CAS  Google Scholar 

  19. Wedaman KP, Meyer DW, Rashid DJ, Cole DG, Scholey JM (1996) Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J Cell Biol 132:371–380

    Article  PubMed  CAS  Google Scholar 

  20. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6:328–334

    Article  PubMed  CAS  Google Scholar 

  21. Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14:2025–2032

    Article  PubMed  CAS  Google Scholar 

  22. Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA (2005) Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 6:1114–1124

    Article  PubMed  CAS  Google Scholar 

  23. Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 281:4094–4099

    Article  PubMed  CAS  Google Scholar 

  24. Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16:2245–2251

    Article  PubMed  CAS  Google Scholar 

  25. Schonteich E, Wilson GM, Burden J, Hopkins CR, Anderson K, Goldenring JR, Prekeris R (2008) The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling. J Cell Sci 121:3824–3833

    Article  PubMed  CAS  Google Scholar 

  26. Ocbina PJ, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 37:2030–2038

    Article  Google Scholar 

  27. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  PubMed  CAS  Google Scholar 

  28. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125:33–45

    Article  PubMed  CAS  Google Scholar 

  29. Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218

    Article  PubMed  CAS  Google Scholar 

  30. Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436:583–587

    Article  PubMed  CAS  Google Scholar 

  31. Pan X, Ou G, Civelekoglu-Scholey G, Blacque OE, Endres NF, Tao L, Mogilner A, Leroux MR, Vale RD, Scholey JM (2006) Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol 174:1035–1045

    Article  PubMed  CAS  Google Scholar 

  32. Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 180:23–29

    Article  PubMed  CAS  Google Scholar 

  33. Serra R (2008) Role of intraflagellar transport and primary cilia in skeletal development. Anat Rec (Hoboken) 291:1049–1061

    Article  CAS  Google Scholar 

  34. Wang W, Zhu JQ, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (ot-kifc1) from Octopus tankahkeei. Comp Biochem Physiol B Biochem Mol Biol 156:174–182

    Article  PubMed  Google Scholar 

  35. Wang W, Zhu JQ, Yu HM, Tan FQ, Yang WX (2010) KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei. Plos One 5:1–11

    Google Scholar 

  36. Wang W, Dang R, Zhu JQ, Yang WX (2010) Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of Octopus tankahkeei. Comp Biochem Physiol A Mol Integr Physiol 157:237–245

    Article  PubMed  Google Scholar 

  37. Franzén A (1967) Spermiogenesis and spermatozoa of the Cephalopoda. Ark Zool 19:323–334

    Google Scholar 

  38. Miller MG, Mulholland DJ, Vogl AW (1999) Rat testis motor proteins associated with spermatid translocation (dynein) and spermatid flagella (kinesin-II). Biol Reprod 60:1047–1056

    Article  PubMed  CAS  Google Scholar 

  39. Navolanic PM, Sperry AO (2000) Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biol Reprod 62:1360–1369

    Article  PubMed  CAS  Google Scholar 

  40. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  41. Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59

    Article  PubMed  CAS  Google Scholar 

  42. Seog DH, Lee DH, Lee SK (2004) Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J Korean Med Sci 19:1–7

    Article  PubMed  CAS  Google Scholar 

  43. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Natl Rev Mol Cell Biol 10:682–696

    Article  CAS  Google Scholar 

  44. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Natl Rev Mol Cell Biol 10:765–777

    Article  CAS  Google Scholar 

  45. Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 155:77–88

    Article  PubMed  CAS  Google Scholar 

  46. Bernasconi P, Cappelletti C, Navone F, Nessi V, Baggi F, Vernos I, Romaggi S, Confalonieri P, Mora M, Morandi L, Mantegazza R (2008) The kinesin superfamily motor protein KIF4 is associated with immune cell activation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 67:624–632

    Article  PubMed  CAS  Google Scholar 

  47. Sperry AO, Zhao LP (1996) Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis. Mol Biol Cell 7:289–305

    PubMed  CAS  Google Scholar 

  48. Zou Y, Millette CF, Sperry AO (2002) KRP3A and KRP3B: candidate motors in spermatid maturation in the seminiferous epithelium. Biol Reprod 66:843–855

    Article  PubMed  CAS  Google Scholar 

  49. Yang WX, Sperry AO (2003) C-Terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729

    Article  PubMed  CAS  Google Scholar 

  50. Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 157:123–131

    Article  PubMed  Google Scholar 

  51. Bray JD, Chennathukuzhi VM, Hecht NB (2004) KIF2Aβ: a kinesin family member enriched in mouse male germ cells, interacts with translin associated factor-X (TRAX). Mol Reprod Dev 69:387–396

    Article  PubMed  CAS  Google Scholar 

  52. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-Β2 and RanGTP. Nat Cell Biol 12:703–710

    Article  PubMed  CAS  Google Scholar 

  53. Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74:684–690

    Article  PubMed  CAS  Google Scholar 

  54. Yu KM, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337:113–123

    Article  PubMed  CAS  Google Scholar 

  55. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107

    Article  PubMed  CAS  Google Scholar 

  56. Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskelet 38:29–37

    Article  CAS  Google Scholar 

  57. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008

    Article  PubMed  CAS  Google Scholar 

  58. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633

    Article  PubMed  CAS  Google Scholar 

  59. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  PubMed  CAS  Google Scholar 

  60. Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome and tail. Mol Reprod Dev 63:1–4

    Article  PubMed  CAS  Google Scholar 

  61. Martínez-Soler F, Kurtz K, Chiva M (2007) Sperm nucleomorphogenesis in the cephalopod Sepia officinalis. Tissue Cell 39:99–108

    Article  PubMed  Google Scholar 

  62. Sun X, Yang WX (2010) Mitochondria: transportation, distribution and function during spermiogenesis. Adv Biosci Biotechnol 1:97–109

    Article  Google Scholar 

  63. Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA (2007) Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8:1722–1735

    Article  PubMed  CAS  Google Scholar 

  64. Cai Q, Gerwin C, Sheng ZH (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170:959–969

    Article  PubMed  CAS  Google Scholar 

  65. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557

    Article  PubMed  CAS  Google Scholar 

  66. Mruk DD, Cheng CY (2004) Sertoli–Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  PubMed  CAS  Google Scholar 

  67. Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205:117–131

    Article  PubMed  CAS  Google Scholar 

  68. Marshall WF, Nonaka S (2006) Cilia: tuning into the cell’s antenna. Curr Biol 16(15):604–614

    Article  Google Scholar 

  69. Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signaling. Curr Top Dev Biol 85:23–61

    Article  PubMed  CAS  Google Scholar 

  70. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Reiter JF (2008) Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of the Sperm Laboratory at Zhejiang University. We are also grateful to Mr. Jia-Qiang Yan and other members in Professor Zhu Jun-Quan’s laboratory at Ningbo University for materials preparation. This project was supported in part by: (1) Zhejiang Provincial Natural Science Foundation of China (Grant No Z307536 and Y2100296); (2) National Natural Science Foundation of China, Grant number: No. 31072198 and 40776079; (3) K. C. Wong Magna Fund in Ningbo University; (4) the Scientific Research Foundation of Graduate School of Ningbo University (Grant No NG09JLA013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Additional information

Ran Dang, Jun-Quan Zhu, and Fu-Qing Tan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, R., Zhu, JQ., Tan, FQ. et al. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Mol Biol Rep 39, 5589–5598 (2012). https://doi.org/10.1007/s11033-011-1363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1363-4

Keywords

Navigation