Skip to main content
Log in

Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Accurate normalization of gene expression with qRT-PCR depends on the use of appropriate reference genes (RGs) for the species under a given set of experimental conditions. Multiple RGs for gene expression analysis of soybean exposed to heavy metal stress treatment have not been reported in the literature. In this study, we evaluated the expression stability of ten candidate RGs in leaves, roots and stems of two soybean cultivars exposed to cadmium (Cd). Based on the geNorm and NormFinder analysis, ACT3, PP2A, ELF1B and F-box were the most stable RGs in these gene expression studies. In contrast, G6PD, UBC2, TUB, and ELF1A were the most variable ones and should not be used as RGs in these experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  2. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    PubMed  CAS  Google Scholar 

  3. Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17:493–498

    PubMed  CAS  Google Scholar 

  4. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    CAS  Google Scholar 

  5. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plant. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  6. Prasad SM, Zeeshan M (2005) UV-B radiation and cadmium-induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biol Plantarum 49:229–236

    CAS  Google Scholar 

  7. Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    PubMed  CAS  Google Scholar 

  8. Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    CAS  Google Scholar 

  9. Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    PubMed  CAS  Google Scholar 

  10. Jegadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max(L.) Merr]. Theor Appl Genet 121:283–294

    PubMed  CAS  Google Scholar 

  11. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Genome Anal 139:5–17

    CAS  Google Scholar 

  12. Bustin SA, Benes V, Nolan T, Pfaffi MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    PubMed  CAS  Google Scholar 

  13. Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51:1694–1706

    PubMed  CAS  Google Scholar 

  14. Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    PubMed  Google Scholar 

  15. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    PubMed  CAS  Google Scholar 

  16. Maroufi A, Bockstaele EV, Loose MD (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    PubMed  Google Scholar 

  17. Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Wuytswinkel OV (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    PubMed  CAS  Google Scholar 

  18. Sigh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–368

    Google Scholar 

  19. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66:928–935

    PubMed  CAS  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  21. Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    PubMed  Google Scholar 

  22. Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    CAS  Google Scholar 

  23. Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R (2010) The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem 406:185–192

    PubMed  CAS  Google Scholar 

  24. Basa B, Solti Á, Sárcári É, Tamás L (2009) Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation. Funct Plant Biol 26:1079–1087

    Google Scholar 

  25. Andersen CL, Jensen JJ, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    PubMed  CAS  Google Scholar 

  26. Ablett GR, Stirling BT, Fischer JD (1999) Westag 97 soybean. Can J Plant Sci 79:371–372

    Google Scholar 

  27. Poysa V, Buzzell RI (2001) AC Hime Soybean. Can J Plant Sci 8:443–444

    Google Scholar 

  28. Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253

    CAS  Google Scholar 

  29. Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by root: contribution of apoplast and high- and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    CAS  Google Scholar 

  30. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-root Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    PubMed  CAS  Google Scholar 

  31. Cordoba EM, Die JV, González-Verdejo CI, Nadal S, Román B (2011) Selection of reference genes in Hedysarum coronarium under carious stresses and stages of development. Anal Biochem 409:236–243

    PubMed  CAS  Google Scholar 

  32. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    PubMed  CAS  Google Scholar 

  33. Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408:337–339

    PubMed  CAS  Google Scholar 

  34. Huis R, Hawkins S, Neuteling G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:87

    Google Scholar 

  35. Smith RD, Walker JC (1996) Plant protein phosphatases. Ann Rev Plant Phys Plant Mol Biol 47:101–125

    CAS  Google Scholar 

  36. Filby AL, Tyler CR (2007) Appropriate housekeeping genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8:10

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Green Farm Ontario and Agriculture and Agri-Food Canada for financial support to K. Yu and V. Poysa and the China Scholarship Council for financial support to Y. Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangfu Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yu, K., Poysa, V. et al. Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Rep 39, 1585–1594 (2012). https://doi.org/10.1007/s11033-011-0897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0897-9

Keywords

Navigation