Skip to main content
Log in

CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cleaved amplified polymorphic sequence (CAPS) marker system using mitochondrial consensus primers was applied for molecular identification of Korean ginseng cultivars (Panax ginseng). Initially, a total of 34 primers were tested to six Korean ginseng cultivars and two foreign Panax species, P. quinquefolius and P. notoginseng. In the polymerase chain reaction (PCR) amplification results, four primers (mt7, mt11, mt13, and mt18) generated co-dominant polymorphic banding patterns discriminating the Korean ginseng cultivars from P. quinquefolius and P. notoginseng. In the CAPS analysis results, the majority of the cleaved PCR products also yielded additional latent polymorphisms between the Korean ginseng cultivars and two foreign Panax species. Specific latent CAPS polymorphisms for cultivar Gopoong and Chunpoong were detected from internal region amplified with mt9 primer by treating HinfI and Tsp509I endonucleases, respectively. Sequencing analysis revealed that the length of amplified region of Korean ginseng cultivars was 2,179 bp, and those of P. quinquefolius and P. notoginseng were 2,178 and 2,185 bp, respectively. Blast search revealed that the amplified region was a mitochondrial cytochrome oxidase subunit 2 (cox2) gene intron II region. Nineteen single nucleotide polymorphisms (SNP) including each specific SNP for Gopoong and Chunpoong, and three insertion and deletion (InDel) polymorphisms were detected by sequence alignment. The CAPS markers developed in this study, which are specific to Gopoong and Chunpoong, and between the Korean ginseng cultivars and two foreign Panax species, will serve as a practical and reliable tool for their identification, purity maintenance, and selection of candidate lines and cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu J, Wang S, Liu H, Yang L, Nan G (1995) Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech Ageing Dev 83:43–53

    Article  PubMed  CAS  Google Scholar 

  2. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000) The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 11:565–576

    Article  PubMed  CAS  Google Scholar 

  3. Yun TK, Lee YS, Lee YH, Kim SI, Yun HY (2001) Anticarcinogenic effect of Panax ginseng C. A. Meyer and identification of active compounds. J Korean Med Sci 16:6–18

    Google Scholar 

  4. Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS (2003) Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10:600–605

    Article  PubMed  CAS  Google Scholar 

  5. Kim SH, Park KS (2003) Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 48:511–513

    Article  PubMed  CAS  Google Scholar 

  6. Van Kampen J, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 184:521–529

    Article  PubMed  Google Scholar 

  7. de Andrade E, de Mesquita AA, Claro Jde A, de Andrade PM, Ortiz V, Paranhos M, Srougi M (2007) Study of the efficacy of Korean Red Ginseng in the treatment of erectile dysfunction. Asian J Androl 9:241–244

    Article  PubMed  Google Scholar 

  8. Wang LC, Lee TF (2000) Effect of ginseng saponins on cold tolerance in young and elderly rats. Planta Med 66:144–147

    Article  PubMed  CAS  Google Scholar 

  9. Kang KS, Kim HY, Yamabe N, Park JH, Yokozawa T (2007) Preventive effect of 20 (S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic Res 41:1181–1188

    Article  PubMed  CAS  Google Scholar 

  10. Hu SY (1976) The genus Panax (ginseng) in Chinese medicine. Econ Bot 30:11–28

    Article  Google Scholar 

  11. Park JD, Rhee DK, Lee YH (2005) Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 4:159–175

    Article  CAS  Google Scholar 

  12. Kwon WS, Chung CM, Kim YT, Lee MG, Choi KT (1998) Breeding process and characteristics of KG101, a superior line of Panax ginseng C. A. Meyer. Korean J Ginseng Sci 22:11–17

    Google Scholar 

  13. Kwon WS, Lee JH, Park CS, Yang DC (2003) Breeding process and characteristics of Gopoong, a new variety of Panax ginseng C. A. Meyer. Korean J Ginseng Sci 27:86–91

    Article  Google Scholar 

  14. Kwon WS, Lee MG, Choi KT (2000) Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C. A. Meyer. Korean J Ginseng Sci 24:1–7

    Google Scholar 

  15. Kim OT, Bang KH, In DS, Lee JW, Kim YC, Shin YS, Hyun DY, Lee SS, Cha SW, Seong NS (2007) Molecular authentication of ginseng cultivars by comparison of internal transcribed spacer and 5.8 S rDNA sequences. Plant Biotechnol Rep 1:163–167

    Article  Google Scholar 

  16. Park MJ, Kim MK, In JG, Yang DC (2006) Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res Int 39:568–574

    Article  CAS  Google Scholar 

  17. Yang DC, Yang KJ, Yoon ES (2001) Comparison of ITS (internal transcribed spacer) and 5.8S rDNA sequences among varieties and cultivars in Panax ginseng. J Photosci 8:55–60

    CAS  Google Scholar 

  18. Bang KH, Lee SW, Hyun DY, Cho JH, Cha SW, Seong NS, Huh MK (2004) Molecular authentication and genetic polymorphism of Korean ginseng (Panax ginseng C. A. Meyer) by inter-simple sequence repeats (ISSRs) markers. J Life Sci 14:425–428

    Article  Google Scholar 

  19. In DS, Kim YC, Bang KH, Chung JW, Kim OT, Hyun DY, Cha SW, Kim TS, Seong NS (2005) Genetic relationships of Panax species by RAPD and ISSR analyses. Korean J Med Crop Sci 13:249–253

    Google Scholar 

  20. Kim BB, Jeong JH, Jung SJ, Yun DW, Yoon ES, Choi YE (2005) Authentication of Korean Panax ginseng from Chinese Panax ginseng and Panax quinquefolius by AFLP analysis. J Plant Biotechnol 7:81–86

    Google Scholar 

  21. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ (2007) Development and characterization of new microsatellite markers for ginseng (Panax ginseng CA Meyer). Conserv Genet 8:1507–1509

    Article  CAS  Google Scholar 

  22. Van Dan N, Ramchiary N, Choi SR, Uhm TS, Yang TJ, Ahn IO, Lim YP (2010) Development and characterization of new microsatellite markers in Panax ginseng (C. A. Meyer) from BAC end sequences. Conserv Genet 11:1223–1225

    Article  Google Scholar 

  23. Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6:393–397

    Article  PubMed  CAS  Google Scholar 

  24. Jigden B, Wang H, Samdan N, Yang DC (2010) Molecular identification of oriental medicinal plant Anemarrhena asphodeloides Bunge (‘Jimo’) by multiplex PCR. Mol Biol Rep 37:955–960

    Article  PubMed  CAS  Google Scholar 

  25. Small RL, Lickey EB, Shaw J, Hauk WD (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 36:509–522

    Article  PubMed  CAS  Google Scholar 

  26. Lee JH, Lee JW, Sung JS, Bang KH, Moon SG (2009) Molecular authentication of 21 Korean Artemisia species (Compositae) by polymerase chain reaction-restriction fragment length polymorphism based on trnL-F region of chloroplast DNA. Biol Pharm Bull 32:1912–1916

    Article  PubMed  CAS  Google Scholar 

  27. Shu Y, Li Y, Zhu Z, Bai X, Cai H, Ji W, Guo D, Zhu Y (2010) SNPs discovery and CAPS marker conversion in soybean. Mol Biol Rep. doi:10.1007/s11033-010-0300-2

  28. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  29. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  PubMed  CAS  Google Scholar 

  30. Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430

    Article  CAS  Google Scholar 

  31. Wang H, Sun H, Kwon WS, Jin H, Yang DC (2010) A PCR-based SNP marker for specific authentication of Korean ginseng (Panax ginseng) cultivar “Chunpoong”. Mol Biol Rep 37:1053–1057

    Article  PubMed  CAS  Google Scholar 

  32. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  33. Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol Breed 12:51–59

    Article  CAS  Google Scholar 

  34. Wang HT, Sun H, Kwon WS, Jin H, Yang DC (2009) Molecular identification of the Korean ginseng cultivar “Chunpoong” using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 20:41–45

    PubMed  Google Scholar 

  35. Wang HT, Sun H, Kwon WS, Jin H, Yang DC (2010) A simple method for identifying the Panax ginseng cultivar Gumpoong based on 26S rDNA. Planta Med 76:399–401

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Hyeong Cho.

Additional information

Jei-Wan Lee and Kyong Hwan Bang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Bang, KH., Kim, YC. et al. CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer). Mol Biol Rep 39, 729–736 (2012). https://doi.org/10.1007/s11033-011-0792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0792-4

Keywords

Navigation