Skip to main content

Advertisement

Log in

Screening of genes induced by salt stress from Alfalfa

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An alfalfa cDNA library induced by salt stress was constructed by suppression subtraction hybridization (SSH) technology. Total RNA from 10-day-old seedlings was used as a “driver,” and total RNA from seedlings induced by salt was used as a “tester”. One hundred and nineteen clones identified as positive clones by reverse Northern dot-blotting resulted in 82 uni-ESTs comprised of 16 contigs and 66 singletons. Blast analysis of deduced protein sequences revealed that 51 ESTs had identity similar to proteins with known function, while 24 could not be annotated at all. Most of the annotated sequences were homologous to genes involved in abiotic or biotic stress in plants. Among these proteins, beta-amylase, fructose-1,6-bisphosphate, aldolase, and sucrose synthase are related to osmolyte synthesis; a CCCH-type zinc finger protein, DNA binding protein, His–Asp phosphotransfer protein, and the RelA/SpoT protein partake in transcription regulation and signal transduction; and ribulose-l,5-bisphosphate carboxylase/oxygenase, chlorophyll a/b binding proteins, and an early light-inducible proteins are related to photosynthesis. In addition, several ESTs, similar to genes from other plant species, closely involved in salt stress were isolated from alfalfa, such as an aquaporin protein, a late embryogenesis-abundant protein, and glutathione peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of ‘‘redox’’ and abscisic acid-mediated controls. Plant Physiol 129:460–468. doi:10.1104/pp.011021

    Article  CAS  PubMed  Google Scholar 

  2. Shen B, Jensen RG, Bohnert H (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183. doi:10.1104/pp.113.4.1177

    Article  CAS  PubMed  Google Scholar 

  3. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  4. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. doi:10.1038/90824

    Article  CAS  PubMed  Google Scholar 

  5. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  Google Scholar 

  6. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2

    Article  CAS  PubMed  Google Scholar 

  7. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Kasuga M, Sakuma Y (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1401

    Article  CAS  PubMed  Google Scholar 

  9. Sohn KH, Lee SC, Jung HW (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance and drought and salt stress tolerance. Plant Mol Biol 61:897–915. doi:10.1007/s11103-006-0057-0

    Article  CAS  PubMed  Google Scholar 

  10. Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Over expression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618. doi:10.1007/s11103-004-1521-3

    Article  CAS  PubMed  Google Scholar 

  11. Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506. doi:10.1007/s00299-006-0248-9

    Article  CAS  PubMed  Google Scholar 

  12. Nanjo T, Kobayashi M, Yoshiba Y et al (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210. doi:10.1016/S0014-5793(99)01451-9

    Article  CAS  PubMed  Google Scholar 

  13. Hong Z, Lakkineni K, Zhang Z et al (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129

    Article  CAS  PubMed  Google Scholar 

  14. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi:10.1016/S1360-1385(00)01838-0

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Zheng HL, Xiao Q et al (2005) Effects of salinity on oxidative and antioxidative system of Spartina alterniflora. J Xiamen Unversity 44(4):576–579 Natural Science

    CAS  Google Scholar 

  16. Zhang DD, Ma HX, Ji XJ, Zhou CL, Wang MW, Tang RS, Yang YH (2006) Construction of cDNA Library of Salicornia bigelovii Torr. during early stage of salt stress based on suppression subtractive hybridization. Jiangsu J Agr Sci 22(2):113–116

    CAS  Google Scholar 

  17. Merchan F, Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17. doi:10.1111/j.1365-313X.2007.03117.x

    Article  CAS  PubMed  Google Scholar 

  18. Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59(3):633–644. doi:10.1093/jxb/erm355

    Article  CAS  PubMed  Google Scholar 

  19. Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71:61–67. doi:10.1111/j.1399-3054.1987.tb04617.x

    Article  CAS  Google Scholar 

  20. Yang QC, Sun Y, Kang JM (2005) Research on the advancement of salt tolerant genes in alfalfa. Acta Agrestia Sin 13(3):253–256

    Google Scholar 

  21. Zhang J, Underwood LE, D’Ercole AJ (2000) Formation of chimeric cDNAs during suppression subtractive hybridization and subsequent polymersase chain reaction. Anal Biochem 282:259–262. doi:10.1006/abio.2000.4613

    Article  CAS  PubMed  Google Scholar 

  22. Sun JQ, Jiang HL, Xu YX, Li HM, Wu XY, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi:10.1093/pcp/pcm088

    Article  CAS  PubMed  Google Scholar 

  23. Zhang YM, Liu JK, Mohammad RS, Wong TY (2006) Characterization of a Mn-dependent fructose-1, 6-bisphosphate aldolase in Deinococcus radiodurans. Biometals 19:31–37. doi:10.1007/s10534-005-4320-7

    Article  PubMed  CAS  Google Scholar 

  24. Zhang XN, Lin CG, Chen HY et al (2003) Cloning of a NaCl-induced fructose-1, 6-diphosphate aldolase cDNA from Dunaliella salina and its expression in tobacco. Sci China 46(1):49–57

    Article  CAS  Google Scholar 

  25. Seki M, Narusaki M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    Article  CAS  PubMed  Google Scholar 

  26. Xu X, Yang J, Zheng GQ et al (2006) Sugars and sucrose-metabolizing enzymes in leaves of Lycium barbarum L. under salt stress. CJEA 14(2):46–48

    Google Scholar 

  27. Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300. doi:10.1007/s10142-008-0075-x

    Article  CAS  PubMed  Google Scholar 

  28. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  29. Schena M, Davis RW (1992) HDZip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89:3894–3898. doi:10.1073/pnas.89.9.3894

    Article  CAS  PubMed  Google Scholar 

  30. Olsson AS, Engström P, Söderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677. doi:10.1007/s11103-004-1581-4

    Article  CAS  PubMed  Google Scholar 

  31. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300. doi:10.1038/371297a0

    Article  CAS  PubMed  Google Scholar 

  32. Kim DW, Rakwal R, Agrawal GK et al (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539. doi:10.1002/elps.200500334

    Article  CAS  PubMed  Google Scholar 

  33. Yang CP, Wang YC, Liu GF, Jiang J (2004) Study on Gene Expression of Tamarix Under NaHCO3 Stress Using SSH Technology. Acta Genetica Sin 31:926–933

    CAS  Google Scholar 

  34. Zeng Q, Chen X, Wood AJ (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. Exp Bot 53:1197–1205. doi:10.1093/jexbot/53.371.1197

    Article  CAS  Google Scholar 

  35. Shinozaki K, Yamaguchi-Shinozaki K, Mizoguchi T et al (1998) Molecular responses to water stress in Arabidopsis thaliana. J Plant Res 111:345–351. doi:10.1007/BF02512195

    Article  CAS  Google Scholar 

  36. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  38. Shen Q, Uknes S, Ho THD (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652–23660

    CAS  PubMed  Google Scholar 

  39. Chen CN, Chu CC, Zentella R et al (2002) AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol 49:633–644

    CAS  PubMed  Google Scholar 

  40. Wei H, Dhanaraj AL, Rowland LJ et al (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416. doi:10.1007/s00425-004-1440-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchuan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Sun, Y., Yang, Q. et al. Screening of genes induced by salt stress from Alfalfa. Mol Biol Rep 37, 745–753 (2010). https://doi.org/10.1007/s11033-009-9590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9590-7

Keywords

Navigation