Skip to main content

Advertisement

Log in

Cloning and characterization of the 14-3-3 protein gene from the halotolerant alga Dunaliella salina

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that 14-3-3 proteins exist in all the eukaryotic organisms studied; however, studies on the 14-3-3 proteins have not been involved in the halotolerant, unicellular green alga Dunaliella salina so far. In the present study, a cDNA encoding 14-3-3 protein of D. salina was cloned and sequenced by PCR and rapid amplification of cDNA end (RACE) technique based on homologous sequences of the 14-3-3 proteins found in other organisms. The cloned cDNA of 1485 bp in length had a 29.2 kDa of molecular weight and contained a 774 bp of open reading frame encoding a polypeptide of 258 amino acids. Like the other 14-3-3 proteins, the deduced amino acid sequences of the D. salina 14-3-3 protein also contained two putative phosphorylation sites within the N-terminal region (positions 62 and 67). Furthermore, an EF hand motif characteristic for Ca2+-binding sites was located within the C-terminal part of this polypeptide (positions 208–219). Analysis of bioinformatics revealed that the 14-3-3 protein of D. salina shared homology with that of other organisms. Real-time quantitative PCR demonstrated that expression of the 14-3-3 protein gene is cell cycle-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  1. Liebich I, Voigt J (1995) A Chlamydomonas homologue to the 14-3-3 proteins: cDNA and deduced amino acid sequence. Biochim Biophys Acta 1263:79–85

    PubMed  Google Scholar 

  2. Voigt J, Frank R (2003) 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall. Plant Cell 15:1399–1413

    Article  PubMed  CAS  Google Scholar 

  3. Moore BW, Perez VJ (1967) Specific acid proteins in the nervous system. In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice-Hall, Englewood Cliffs Prentice Hall, New Jersey, pp 343–359

    Google Scholar 

  4. Aitken A, Colling DB, Van Heusden BPH, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) 14–3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17:498–501

    Article  PubMed  CAS  Google Scholar 

  5. Ichimura T, Sugano H, Kuwano R, Sunaya T, Okuyama T, Isobe T (1991) Widespread distribution of the 14-3-3 protein in vertebrate brains and bovine tissues: correlation with the distributions of calcium-dependent protein kinases. J Neurochem 56:1449–1451

    Article  PubMed  CAS  Google Scholar 

  6. Tang SJ, Suen TC, McInnes RR, Buchwald M (1998) Association of the TLX-2 homeodomain and 14-3-3 eta signaling proteins. J Biol Chem 273:25356–25363

    Article  PubMed  CAS  Google Scholar 

  7. Morrison D (1994) 14-3-3: modulators of signaling protein. Science 266:56–57

    Article  PubMed  CAS  Google Scholar 

  8. Wilker EW, van Vugt MA, Artim SA, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM, Yaffe MB (2007) 14-3-3 sigma controls mitotic translation to facilitate cytokinesis. Nature 446:329–332

    Article  PubMed  CAS  Google Scholar 

  9. Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstrom M, Doyle DA, Elkins JM (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci USA 103:17237–17242

    Article  PubMed  CAS  Google Scholar 

  10. Aitken A, Howell S, Jones D, Madrazo J, Patel Y (1995) 14-3-3 alpha and delta are the phosphorylated forms of Raf-activating 14-3-3 beta and zeta. J Biol Chem 270:5706–5709

    Article  PubMed  CAS  Google Scholar 

  11. Piotrowski M, Oecking C (1998) Five new 14-3-3 isoforms from Nicotiana tabacum L.: implications for the phylogeny of plant 14-3-3 proteins. Planta 204:127–130

    Article  PubMed  CAS  Google Scholar 

  12. Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43:384–398

    Article  PubMed  CAS  Google Scholar 

  13. Vasara T, Keranen S, Penttila M, Saloheimo M (2002) Characterization of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim Biophys Acta 1590:27–40

    Article  PubMed  CAS  Google Scholar 

  14. Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172

    Article  PubMed  CAS  Google Scholar 

  15. Wu K, Rooney MF, Ferl RJ (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol 114:1421–1431

    Article  PubMed  CAS  Google Scholar 

  16. Daugherty CJ, Ronney MF, Miller PW, Ferl RJ (1996) Molecular organization and tissue-specific expression of an Arabidopsis 14-3-3 gene. Plant Cell 8:1239–1248

    Article  PubMed  CAS  Google Scholar 

  17. Voigt J, Stevanovic S, Schirle M, Fausel M, Maier J, Adam KH, Marquardt O (2004) A 14-3-3 protein of Chlamydomonas reinhardtii associated with the endoplasmic reticulum: nucleotide sequence of the cDNA and the corresponding gene and derived amino acid sequence. Biochim Biophys Acta 1679:180–194

    PubMed  CAS  Google Scholar 

  18. Voigt J, Liebich I, Kiess M, Frank R (2001) Subcellular distribution of 14-3-3 proteins in the unicellular green alga Chlamydomonas reinhardtii. Eur J Biochem 268:6449–6457

    Article  PubMed  CAS  Google Scholar 

  19. Wang T, Xue L, Hou W, Yang B, Cha Y, Ji X, Wang Y (2007) Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol 76(3):651–657

    Article  PubMed  CAS  Google Scholar 

  20. Silflow CD, Youngblom J (1986) Chlamydomonas reinhardtii tubulin gene structure. Ann NY Acad Sci 466:18–30

    Article  PubMed  CAS  Google Scholar 

  21. Combet C, Blanchet C, Geourjon C, Deleage G (2000) Network protein sequence analysis. Trends Biochem Sci 25:147–150

    Article  PubMed  CAS  Google Scholar 

  22. Voigt J, Liebich I, Wöstemeyer J, Adam KH, Marquardt O (2000) Nucleotide sequence, genomic organization and cell-cycle-dependent expression of a Chlamydomonas 14-3-3 gene. Biochim Biophys Acta 1492(2–3):395–405

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (No.30470030), and carried out in Henan Key Laboratory for Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lexun Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Xue, L., Ji, X. et al. Cloning and characterization of the 14-3-3 protein gene from the halotolerant alga Dunaliella salina . Mol Biol Rep 36, 207–214 (2009). https://doi.org/10.1007/s11033-007-9168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9168-1

Keywords

Navigation