Skip to main content
Log in

Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Brassica napus seed composition traits (fibre, protein, oil and fatty acid profiles), seed colour and yield-associated traits are regulated by a complex network of genetic factors. Although previous studies have attempted to dissect the underlying genetic basis for these traits, a more complete picture of the available quantitative trait loci (QTL) variation and any interaction between the different traits is required. In this study, QTL mapping for eleven seed composition traits, seed colour and a yield-related trait (TSW) was conducted in a spring-type canola-quality B. napus doubled haploid (DH) population from a cross between black-seeded (DH12075) and yellow-seeded (YN01-429) lines across five environments. A major QTL associated with fibre traits (acid detergent fibre, acid detergent lignin and neutral detergent fibre) and seed colour (whiteness index) was mapped on chromosome N9 across the five environments. Multi-trait analysis identified QTL which had pleiotropic effect for seed colour and other composition traits. Multi-environment analysis revealed genetic (QTL) × environment effects on most QTL. These findings provide a more detailed insight into the complex QTL networks controlling seed composition and yield-associated traits in canola-quality B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alimi NA, Bink MCAM, Dieleman JA, Magán JJ, Wubs AM, Palloix A, van Eeuwijk FA (2013) Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper. Theor Appl Genet 126:2597–2625

    Article  CAS  PubMed  Google Scholar 

  • American Oil Chemist Society (1997) Determination of fatty acids in edible oils and fats by capillary GLC. AOAC Official Method Ce le-91

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De HA, Font R, Luhs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Bagheri H, Pino-Del-Carpio D, Hanhart C, Bonnema G, Keurentjes J, Aarts MGM (2013) Identification of seed-related QTL in Brassica rapa. Span J Agric Res 11:1085–1093

    Article  Google Scholar 

  • Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait Loci analysis of the Brassica C genome. Plant Physiol 144:1827–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42

  • Boesewinkel FD, Bouman F (1995) The seed: structure and function. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 1–24

    Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics  37:231–240

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor Appl Genet 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty P, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Da Costa E, Silva L, Wang S, Zeng ZB (2012) Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses. BMC Genet 13:67. doi:10.1186/1471-2156-13-67

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Ecke W, Uzunova M, Weiβleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  CAS  PubMed  Google Scholar 

  • Hill CB, Taylor JD, Edwards J, Mather D, Langridge P, Bacic A, Roessner U (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Kebede B, Cheema K, Greenshields DL, Li C, Selvaraj G, Rahman H (2012) Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome 55:813–823

    Article  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T (2012) A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS ONE 7(9):e44145. doi:10.1371/journal.pone.0044145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing Genetic Maps with MAPMAKER/EXP3.0. Whitehead Institute Technical Report. 3rd edition

  • Liu ZW, Fu TD, Tu JX, Chen BY (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet 110:303–310

    Article  CAS  Google Scholar 

  • Liu LZ, Meng JL, Lin N, Chen L, Tang ZL, Zhang XK, Li JN (2006) QTL mapping of seed color for yellow seeded Brassica napus. Yi Chuan Xue Bao 33:181–187

    CAS  PubMed  Google Scholar 

  • Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  PubMed Central  Google Scholar 

  • MacMillan K, Emrich K, Piepho HP, Mullins C, Price A (2006) Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113:953–964

    Article  CAS  PubMed  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccouch SR, Cho YG, Yano PE, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Rakow G, Relf-Eckstein JA (2005) YN01–429. Plant Var Seeds 55:40–41

    Google Scholar 

  • Rakow G, Raney JP, Relf-Eckstein J (1999) Agronomic performance and seed quality of a new source of yellow seeded Brassica napus. In: 10th international rapeseed congress, Canberra, Australia

  • Rakow G, Relf-Eckstein JA, Raney JP (2007) Rapeseed genetic research to improve its agronomic performance and seed quality. HELIA 30:199–206

    Google Scholar 

  • Raney JP, Love HK, Rakow G, Downey RK (1987) An apparatus for rapid preparation of oil and oil-free meal from Brassica seed. Lipid Fett 89:235–237

    Article  CAS  Google Scholar 

  • Rashid A, Rakow G, Downey RK (1994) Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed 112:127–134

    Article  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Hernandez MV, Crossa J, Singh PK, Bains NS, Singh K, Sharma I (2012) Multi-trait and multi-environment QTL analyses for resistance to wheat diseases. PLoS ONE. doi:10.1371/journal.pone.0038008

    Google Scholar 

  • Slominski BA, Simbaya J, Campbell LD, Rakow G, Guenter W (1999) Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Anim Feed Sci Technol 78:249–262

    Article  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W (2010) Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome 53:917–928

    Article  CAS  PubMed  Google Scholar 

  • Tahir M, Zelmer CD, McVetty PBE (2012) Oilseed Brassicas. In: Kole C, Joshi CP, Shonnard DR (eds) Handbook of bioenergy crop plant. CRC Press, Boca Raton, p 461

    Google Scholar 

  • Thies W (1971) Schnelle und einfache Analysen der Fettsaurezusammensetzung in einzelnen Raps-Kotyledonen I. Gaschromatographische und papierchromatographische Methoden. Z Pflanzenzucht 65:181–202

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012). Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2012) New NIRS calibrations for fibre fractions reveal broad genetic variation in Brassica napus seed quality. J Agric Food Chem 60:2248–2256

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE ACM Trans Comput Biol Bioinform 8:381–394

    Article  Google Scholar 

  • Xiao L, Zhao Z, Du D, Yao Y, Xu L, Tang G (2012) Genetic characterization and fine mapping of a yellow-seeded gene in dahuang (a Brassica rapa landrace). Theor Appl Genet 124:903–909

    Article  CAS  PubMed  Google Scholar 

  • Xing YX, Tan YT, Hua JH, Sun XS, Xu CX, Zhang QZ (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ranc N, Sp Muños, Rolland S, Bouchet JP, Desplat N, Paslier MC, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581

    Article  PubMed  Google Scholar 

  • Yang X, Guo Y, Yan J, Zhang J, Song T, Rocheford T, Li JS (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet 120:665–678

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125:715–729

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011a) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  PubMed  Google Scholar 

  • Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J, Ma C, Chen B, Tu J, Fu T (2011b) Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127-17. Mol Breed 3:335–342

    Article  Google Scholar 

  • Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2005) Oil content in a European × Chinese rapeseed population. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Dimov Z, Becker H, Ecke W, Möllers C (2008) Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed 21:115–125

    Article  CAS  Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Council Canada Genomics and Health Initiative and a National Science and Engineering Research Council of Canada (NSERC) Discovery Grant to PRF. We are grateful to Dr. Ginette Séguin-Schwartz (Saskatoon Research Centre, Agriculture and Agri-Food Canada) for providing the BnaYB DH population and to Dr. Rong Zhou (Saskatoon Research Centre, Agriculture and Agri-Food Canada) and his team for seed quality analysis. We also thank Dr. Peng Gao (National Research Council Canada, Saskatoon), Dr. Manoj Kulkarni (National Research Council Canada, Saskatoon) and two anonymous reviewers for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew G. Sharpe or Pierre R. Fobert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Boyle, K., Zhang, W. et al. Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus . Mol Breeding 36, 111 (2016). https://doi.org/10.1007/s11032-016-0521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0521-8

Keywords

Navigation