Skip to main content
Log in

Effect of Lr34/Yr18 on agronomic and quality traits in a spring wheat mapping population and implications for breeding

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The locus Lr34/Yr18 plays an important role in conferring resistance to a number of fungal diseases and is thus an important component of global wheat breeding efforts. We investigated the differences in disease response and agronomic traits of the ‘CDC Teal’ × ‘CDC Go’ spring wheat population of 187 recombinant inbred lines (RILs) in relation to the presence/absence of the rust resistance gene Lr34/Yr18. Lines carrying the resistant allele of Lr34/Yr18 were taller, matured earlier, and yielded less grain with lower test weights than lines without Lr34/Yr18. Lines with or without the resistant allele of Lr34/Yr18 did not differ for grain protein content, SDS sedimentation volume, and for resistance to leaf spotting and common bunt. Lines with Lr34/Yr18 exhibited lower leaf and stripe rust infection than lines without it. We selected superior lines from the population based on high yield, protein content, SDS sedimentation, and the presence of the resistant allele of Lr34/Yr18 and grew them with continued selection in replicated yield trials over nine site-years. We attempted to combine Lr34/Yr18 with high yield, protein content, and SDS sedimentation suitable for the Canadian western red spring wheat class. Our results suggested that the population size we used was not large enough to obtain recombinants with high yield potential, high grain protein, and acceptable quality attributes. Moreover, selection for Lr34/Yr18 resulted in the elimination of lines with high yield potential. We therefore suggest using a population size of at least 310 to increase the potential of pooling Lr34/Yr18 with high grain yield and desirable agronomic and end-use quality attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding—prospects and challenges. Curr Sci 87(5):607–619

    CAS  Google Scholar 

  • Baker RJ (1986) Selection indices in plant breeding. CRC Press, Boca Raton

    Google Scholar 

  • Brown JK (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5(4):339–344

    Article  CAS  PubMed  Google Scholar 

  • Campbell A (1970) Neepawa hard red spring wheat. Can J Plant Sci 50(6):752–753

    Article  Google Scholar 

  • Campbell A, Czarnecki E (1987) Katepwa hard red spring wheat. Can J Plant Sci 67(1):229–230

    Article  Google Scholar 

  • Chen X (2007) Challenges and solutions for stripe rust control in the United States. Crop Pasture Sci 58(6):648–655

    Article  Google Scholar 

  • Chen H, Iqbal M, Perez-Lara E, Yang R-C, Pozniak C, Spaner D (2015) Earliness per se quantitative trait loci and their interaction with Vrn-B1 locus in a spring wheat population. Mol Breed 35(9):1–14

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • DePauw R, Knox R, McCaig T, Clarke F, Clarke J (2011) Carberry hard red spring wheat. Can J Plant Sci 91(3):529–534

    Article  Google Scholar 

  • Drijepondt SC, Pretorius ZA, van Lill D, Rijkenberg FHJ (1990) Effect of Lr34 resistance on leaf rust development, grain yield and baking quality in wheat. Plant Breed 105(1):62–68. doi:10.1111/j.1439-0523.1990.tb00453.x

    Article  Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29(3):467–469. doi:10.1139/g87-081

    Article  Google Scholar 

  • Evans L, Shebeski L, McGinnis R, Briggs K, Zuzens D (1972) Glenlea red spring wheat. Can J Plant Sci 52(6):1081–1082

    Article  Google Scholar 

  • Fox S, Townley-Smith T, Kolmer J, Harder D, Gaudet D, Thomas P, Gilbert J, Noll J (2007) AC Splendor hard red spring wheat. Can J Plant Sci 87(4):883–887

    Article  Google Scholar 

  • Fox S, McKenzie RI, Lamb R, Wise I, Smith MA, Humphreys D, Brown P, Townley-Smith T, McCallum B, Fetch T (2010) Unity hard red spring wheat. Can J Plant Sci 90(1):71–78

    Article  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8(03):269–294

    Article  CAS  PubMed  Google Scholar 

  • Hughes GR, Hucl P (1993) CDC Teal hard red spring wheat. Can J Plant Sci 73(1):193–197

    Article  Google Scholar 

  • Iqbal M, Navabi A, Salmon D, Yang RC, Spaner D (2007) Simultaneous selection for early maturity, increased grain yield and elevated grain protein content in spring wheat. Plant Breed 126(3):244–250

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65(3):392–403. doi:10.1111/j.1365-313X.2010.04430.x

    Article  CAS  PubMed  Google Scholar 

  • Kuchel H, Fox R, Reinheimer J, Mosionek L, Willey N, Bariana H, Jefferies S (2007) The successful application of a marker-assisted wheat breeding strategy. Mol Breed 20(4):295–308

    Article  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114(1):21–30. doi:10.1007/s00122-006-0406-z

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119(5):889–898. doi:10.1007/s00122-009-1097-z

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh R, Huerta-Espino J, Chen X, He Z, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116(8):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Joshi A, Prasad R, Chand R, Singh R (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126(3):711–719. doi:10.1007/s00122-012-2012-6

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Rudd JC, Bai G, Haley SD, Ibrahim AM, Xue Q, Hays DB, Graybosch RA, Devkota RN, St Amand P (2014) Molecular markers linked to important genes in hard winter wheat. Crop Sci 54(4):1304–1321

    Article  CAS  Google Scholar 

  • Marasas C, Smale M, Singh R (2003) The economic impact of productivity maintenance research: breeding for leaf rust resistance in modern wheat⋆. Agric Econ 29(3):253–263

    Article  Google Scholar 

  • McCaig T, DePauw R, Clarke J, McLeod J, Fernandez M, Knox R (1996) AC Barrie hard red spring wheat. Can J Plant Sci 76(2):337–339

    Article  Google Scholar 

  • McCallum BD, DePauw RM (2008) A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci 88(4):649–677

    Article  Google Scholar 

  • McCallum B, Fetch T, Chong J (2007) Cereal rust control in Canada. Crop Pasture Sci 58(6):639–647

    Article  Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant–pathogen interface. Dev Comp Immunol 32(7):736–744. doi:10.1016/j.dci.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  • Ortelli S, Winzeler H, Fried PM, Nösberger J, Winzeler M (1996) Leaf rust resistance gene Lr9 and winter wheat yield reduction: I. Yield and yield components. Crop Sci 36(6):1590–1595

    Article  Google Scholar 

  • Parry MA, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62(2):453–467

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell A, Hannah A (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26(5):496–500

    Article  Google Scholar 

  • Reid TA, Yang R-C, Salmon DF, Navabi A, Spaner D (2011) Realized gains from selection for spring wheat grain yield are different in conventional and organically managed systems. Euphytica 177(2):253–266

    Article  Google Scholar 

  • Rubiales D, Niks R (1995) Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis 79(12):1208–1212

    Article  Google Scholar 

  • Sayre KD, Singh RP, Huerta-Espino J, Rajaram S (1998) Genetic progress in reducing losses to leaf rust in CIMMYT-derived Mexican spring wheat cultivars. Crop Sci 38(3):654–659. doi:10.2135/cropsci1998.0011183X003800030006x

    Article  Google Scholar 

  • Singh R, Huerta-Espino J (1997) Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci 37(2):390–395

    Article  Google Scholar 

  • Singh RP, Rajaram S (1993) Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72(1–2):1–7

    Article  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111(4):731–735. doi:10.1007/s00122-005-2058-9

    Article  CAS  PubMed  Google Scholar 

  • Statistics I (2015) Yield Alberta. https://www.afsc.ca/Default.aspx?cid=1889&lang=1

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93(7):881–890. doi:10.1094/PHYTO.2003.93.7.881

    Article  CAS  PubMed  Google Scholar 

  • Sukhwinder S, Brown-Guedira GL, Grewal TS, Dhaliwal HS, Nelson JC, Singh H, Gill BS (2003) Mapping of a resistance gene effective against Karnal bunt pathogen of wheat. Theor Appl Genet 106(2):287–292

    Google Scholar 

  • Wan AM, Chen XM, He Z (2007) Wheat stripe rust in China. Crop Pasture Sci 58(6):605–619

    Article  Google Scholar 

  • Worland A, Law C, Li W (1990) The location of genes depressing yield associated with the transfer of eyespot resistance from Aegilops ventricosa. Annual report, AFRC Institute of Plant Science Research, John Innes Institute and Sainsbury Laboratory, 1989, pp 7–8

  • Yang H, Tao Y, Zheng Z, Shao D, Li Z, Sweetingham MW, Buirchell BJ, Li C (2013) Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theor Appl Genet 126(2):511–522

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Zhou H, Chai R, Zhuang J, Cheng S, Cao L (2012) Breeding of R8012, a rice restorer line resistant to blast and bacterial blight through marker-assisted selection. Rice Sci 19(1):29–35. doi:10.1016/s1672-6308(12)60017-1

    Article  CAS  Google Scholar 

  • Zhang YH, Liu MF, He JB, Wang YF, Xing GN, Li Y, Yang SP, Zhao TJ, Gai JY (2015) Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 128(6):1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhan X, Chai R, Cheng S, Cao L (2008) Breeding of rice restorer lines carrying BlaSt resistance gene Pi25 by marker-assisted selection. Chin J Rice Sci 6:007

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank Klaus Strenzke, Glen Hawkins, Fabiana Dias, Alex Pswarayi, Joe Back, Ivan Adamyk, Henry Song, Graham Collier, Mohammad Asif, and Neshat Pazooki for technical assistance. This research was supported by grants to the University of Alberta wheat breeding program from the Alberta Crop Industry Development Fund, Western Grains Research Foundation and Alberta Wheat Commission (Grants # 2014F013R and 2014F014R), and Western Grains Research Foundation Endowment Fund (Grant #U1313611671S5-E) to D. Spaner. We would also like to acknowledge Agriculture and Agri-Food Canada (Grant #140915) and Genome Canada and Genome Alberta (Grant #CTAG). The first author received a scholarship from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Iqbal, M., Yang, RC. et al. Effect of Lr34/Yr18 on agronomic and quality traits in a spring wheat mapping population and implications for breeding. Mol Breeding 36, 53 (2016). https://doi.org/10.1007/s11032-016-0478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0478-7

Keywords

Navigation