Skip to main content
Log in

Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Thousand kernel weight (TKW) is commonly regarded as a complex trait in wheat. Both unconditional and conditional quantitative trait locus (QTL) analyses were conducted using software QTLNetwork 2.0 in four environments to evaluate the genetic relationships between TKW and kernel size. These analyses involved a set of 182 F8:9 recombinant inbred lines derived from “Shannong01-35 × Gaocheng9411” with a genetic linkage map consisting of 503 molecular markers. Additive effects, epistatic effects, and genotype-by-environment (G × E) interactions of QTLs for TKW and kernel size were analyzed. A total of nine additive QTLs for TKW and kernel size were identified using unconditional analysis, which distributed on chromosomes 1B, 1D, 3D, 4B, 5B, and 6A. Among these, four QTLs were detected to be related to several different kernel traits. QTkw4B.1-7, QTkw5B.1-12, QTkw5B.1-17, and QTkw6A.1-29 were identified through both conditional and unconditional analyses. Seven QTLs for TKW were only identified under conditional QTL mapping. These included conditional QTLs for TKW influenced by or independent of the given kernel size traits. Twelve pairs of epistatic interaction QTLs involving 18 loci for the measured kernel traits were detected in unconditional analysis. The QTLs discovered in the present study through the combination of conditional and unconditional QTL mapping could increase the understanding of the genetic interrelationships between TKW and kernel size traits at the QTL level and provide the guiding information for breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acreche MM, Slafer GA (2006) Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crop Res 98:52–59

    Article  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Ammiraju J, Dholakia BB, Santra D, Singh H, Lagu M, Tamhankar S, Dhaliwal H, RaoV Gupta V, Ranjekar P (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732

    Article  CAS  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Ayoub M, Symons S, Edney M, Mather D (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Crop Pasture Sci 53:1137–1145

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101:172–179

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, HarelandG Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160

    Article  CAS  Google Scholar 

  • Chen JS, Tian JC, Li QF, Liu K, Chen GF, Gu ZQ (2014) Molecular markers QGW4B-CAPS on chromosome 4B and its application. Chinese Patent. CN201410329392.6

  • Cui F, Li J, Ding AM, Zhao CH, Wang L, Wang XQ, Li SS, Bao YG, Li XF, Feng DS, Kong LR, Wang HG (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536

    Article  PubMed  Google Scholar 

  • Cui F, Zhao CH, Li J, Ding AM, Li XF, Bao YG, Li JM, Ji J, Wang HG (2013) Kernel weight per spike: what contributes to it at the individual QTL level? Mol Breed 31:265–278

    Article  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS, Weber WE (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS, Dweikat I, Gill KS (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87

    Article  CAS  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Guo L, Xing YZ, Mei H, Xu C, Shi C, Wu P, Luo L (2005) Dissection of component QTL expression in yield formation in rice. Plant Breed 124:127–132

    Article  CAS  Google Scholar 

  • Hao YF, Velu G, Peña RJ, Singh S, Singh RP (2014) Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed 34:1893–1902

    Article  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lee WJ, Pedersen JF, Shelton DR (2002) Relationship of Sorghum kernel size to physiochemical, milling, pasting, and cooking properties. Food Res Inter 35:643–649

    Article  CAS  Google Scholar 

  • Li YL, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH (2008) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. Whitehead Institute, Cambridge

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet 111:410–422

    Article  CAS  PubMed  Google Scholar 

  • Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20:41–51

    Article  Google Scholar 

  • Marza F, Bai GH, Carver B, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney C, Somers D, Humphreys D, Lukow O, Ames N, Noll J, Cloutier S, McCallum B (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ’AC Domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  CAS  PubMed  Google Scholar 

  • Moncada P, Martinez C, Borrero J, Châtel M, Gauch JH, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Osborne BG, Anderssen RS (2003) Single-Kernel characterization principles and applications. Cereal Chem J 80:613–622

    Article  CAS  Google Scholar 

  • Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, Misra SC (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Article  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt V (2010) QTL mapping of 1000-kernel weight, kernel length, kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theo Appl Genet 122:211–223

    Article  CAS  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang ZH, Wu XS, Ren Q, Chang XP, Li RZ, Jing RL (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458

    Article  Google Scholar 

  • Wang JS, Liu WH, Wang H, Li LH, Wu J, Yang XM, Li XQ, Gao AN (2011) QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177:277–292

    Article  Google Scholar 

  • Wen YX, Zhu J (2005) Multivariable conditional analysis for complex trait and its components. Acta Genet Sin 32:289–296

    PubMed  Google Scholar 

  • Wiersma JJ, Busch RH, Fulcher GG, Hareland GA (2001) Recurrent selection for kernel weight in spring wheat. Crop Sci 41:999–1005

    Article  Google Scholar 

  • Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ, He C (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303

    Article  CAS  Google Scholar 

  • Wyman E, Nyquist RJ, Baker (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  CAS  PubMed  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Wang JM, Liu Q, Zhang MZ, Zou KQ, Fu XS (2009) Genetic relationships among panicle characteristics of rice (Oryza sativa L.) using unconditional and conditional QTL analyses. J Plant Biol 52:259–267

    Article  CAS  Google Scholar 

  • Yu SB, Li JX, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang KP, Tian JC, Zhao L, Wang S (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R (2013) Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breed 32:771–783

    Article  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “National Natural Science Foundation of China” (31171554), the “Natural Science Foundation of Shandong” (ZR2015CM036), the “Creation of Wheat Germplasm in Shandong Province project”, and the “Research fund for the doctoral program of higher education in China” (No: 20123702110016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiansheng Chen or Jichun Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, Y., Liu, T. et al. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Mol Breeding 35, 194 (2015). https://doi.org/10.1007/s11032-015-0384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0384-4

Keywords

Navigation