Skip to main content
Log in

Grain-specific reduction in lipoxygenase activity improves flour color quality and seed longevity in common wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In higher plants, lipoxygenases (LOXs) catalyze the oxidation of polyunsaturated fatty acids and can accumulate to relatively high levels in the seeds. However, high LOX activity has often been found associated with harmful effects on the quality attributes and the longevity of harvested seeds. Here, we report the development and characterization of three homozygous T5 transgenic lines (designated as LOXRNAi-4, 7 and 9, respectively) with LOX activity specifically reduced in the grains of common wheat. An RNAi hairpin directed under an endosperm-specific promoter was introduced into the genome of the elite wheat variety Longchun 23 using particle bombardment. Each transgenic line (LOXRNAi-4, 7 or 9) derived from separate integration event, which carried more than 20 copies of the transgene. The three LOXRNAi lines and wild-type (WT) Longchun 23 showed a similar level of LOX transcripts in the flag leaves. However, relative to WT control, LOXRNAi-4, 7 and 9 exhibited drastic decreases in the level of LOX transcripts during grain development compared with WT control. The LOX activity levels in the harvested grains of the three transgenic lines were significantly lower than that of WT control under either normal conditions or artificial aging (AA, stored at 40 °C and 85 % humidity for 6 or 9 days) treatment. The whiteness values of the flour samples from LOXRNAi-4, 7 and 9 were generally and significantly higher than those of WT control regardless of the grains were stored under normal or AA conditions. Furthermore, the germination rates of LOXRNAi-4, 7 and 9 were substantially higher than those of WT control under AA treatment. Our data demonstrate that grain-specific reduction in LOX activity by RNAi may represent a generally applicable approach for improving the quality traits and longevity of crop seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreou A, Feussner I (2009) Lipoxygenases: structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans. Method Enzymol 71:441–451

    Article  CAS  Google Scholar 

  • Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    Article  CAS  PubMed  Google Scholar 

  • Barcelo P, Lazzeri PA (1995) Transformation of cereals by microprojectile bombardment of immature inflorescence and scutellum tissues. In: Jones H (ed) Methods in molecular biology: plant gene transfer and expression protocols. Humana Press, Totowa, pp 113–123

    Chapter  Google Scholar 

  • Becker D, Folck A, Knies P, Lörz H, Wieser H (2006) Silencing the α-gliadins in hexaploid bread wheat. In: Lookhart GL, Ng PKW (eds) Gluten proteins. AACC, St Paul, pp 86–89

    Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Longevity, storage, and deterioration. In: Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (eds) Seeds. Springer, New York, pp 341–376

  • Borrelli GM, Troccolo A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta colour. Cereal Chem 76:335–340

    Article  CAS  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 608:183–205

    Article  Google Scholar 

  • Carrera A, Echenique V, Zhang W, Helguera M, Manthey F, Schrager A, Picca A, Cervigni G, Dubcovsky J (2007) A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J Cereal Sci 45:67–77

    Article  CAS  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:13–218

    Article  Google Scholar 

  • Delouche JC, Baskin CC (1973) Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol 1:427–452

    Google Scholar 

  • Du Z, Bramlage W (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Feng B, Dong Z, Xu Z, An X, Qin H, Wu N, Wang D, Wang T (2010) Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J Cereal Sci 52:387–394

    Article  CAS  Google Scholar 

  • Feng B, Dong Z, Xu Z, Wang D, Wang T (2012) Molecular characterization of a novel type of lipoxygenase (LOX) gene from common wheat Triticum aestivum L. Mol Breed 30:113–124

    Article  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Ficco DBM, Mastrangelo AM, Trono D, Borrelli GM, De Vita P, Fares C, Beleggia R, Platani C, Papa R (2014) The colours of durum wheat: a review. Crop Pasture Sci 65:1–15

    Google Scholar 

  • Fu BX (2008) Asian noodles: history, classification, raw materials, and processing. Food Res Int 41:888–902

    Article  CAS  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for functional gene analysis. Transgenic Res 16:689–701

    Article  CAS  PubMed  Google Scholar 

  • Fukushige H, Wang C, Simpson T, Gardner H, Hildebrand D (2005) Purification and identification of linoleic acid hydroperoxides generated by soybean seed lipoxygenases 2 and 3. J Agric Food Chem 53:5691–5694

    Article  CAS  PubMed  Google Scholar 

  • Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312

    Article  PubMed  Google Scholar 

  • Garbus I, Soresi D, Romero J, Echenique V (2013) Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J Cereal Sci 58:298–304

    Article  CAS  Google Scholar 

  • Gayen D, Ali N, Ganguly M, Paul S, Datta K, Datta SK (2014) RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell, Tissue Organ Cult 118:229–243

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Pistón F, Hernando A, Alvarez JB, Shewry PR, Barro F (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    Article  CAS  PubMed  Google Scholar 

  • Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygenase 6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol 161:2159–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hampton JG, TeKrony DM (1995) Handbook of vigour test methods. The International Seed Testing Association, Zurich, p 117

    Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hart GE, Langsten PJ (1977) Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. Heredity 39:263–277

    Article  CAS  Google Scholar 

  • Hazlewood C, Davies MJ (1996) Benzoyl peroxide-induced damage to DNA and its components: direct evidence for the generation of base adducts, sugar radicals, and strand breaks. Arch Biochem Biophys 332:79–91

    Article  CAS  PubMed  Google Scholar 

  • He ZH, Yang J, Zhang Y, Quail KJ, Peña RJ (2004) Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267

    Article  Google Scholar 

  • Heinemann JA, Agapito-Tenfen SZ, Carman JA (2013) A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. Environ Int 55:43–55

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo A, Brandolini A (2012) Lipoxygenase activity in whole meal flours from Triticum monococcum, Triticum turgidum and Triticum aestivum. Food Chem 131:1499–1503

    Article  CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C, Piscozzi R (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci 44:182–193

    Article  CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cai M, Long Q, Liu L, Lin Q, Jiang L, Chen S, Wan J (2014) OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res 23:643–655

    Article  CAS  PubMed  Google Scholar 

  • Hughes RK, West SI, Hornostaj AR, Lawson DM, Fairhurst SA, Sanchez RO, Hough P, Robinson BH, Casey R (2001) Probing a novel potato lipoxygenase with dual positional specificity reveals primary determinants of substrate binding and requirements for a surface hydrophobic loop and has implications for the role of lipoxygenases in tubers. Biochem J 353:345–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KF, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Wu J, Wu Y, Song M, Wang X, Liu B, Yu Z (2009) Storage stability reversion mutation of a rice line devoid of LOX-1, 2 acquired by ion beam irradiation. Plasma Sci Technol 1:116–121

    Google Scholar 

  • Junqueira R, Rocha F, Moreira M, Castro I (2007) Effect of proofing time and wheat flour strength on bleaching, sensory characteristics, and volume of French breads with added soybean lipoxygenase. Cereal Chem 84:443–449

    Article  CAS  Google Scholar 

  • King JM, Svendsen LK, Fehr WR, Narvel JM, White PJ (1998) Oxidative and flavor stability of oil from lipoxygenase-free soybeans. J Am Oil Chem Soc 75:1121–1126

    Article  CAS  Google Scholar 

  • Lamsal BP, Faubion JM (2009) Effect of an enzyme preparation on wheat flour and dough color, mixing, and test baking. LWT-Food Sci Technol 43:1461–1467

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006a) Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J Agric Food Chem 54:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006b) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176

    Article  CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor J, Leach JE, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Li JK, Zhang Y, Yu ZL, Wang YJ, Yang Y, Liu Z, Jiang JY, Song M, Wu YJ (2007) Superior storage stability in low lipoxygenase maize varieties. J Stored Prod Res 43:530–534

    Article  CAS  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M-C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Loiseau J, Vu BL, Macherel MH, Deunff YL (2001) Seed lipoxygenases: occurrence and functions. Seed Sci Res 11:199–211

    CAS  Google Scholar 

  • Long Q, Zhang W, Wang P, Shen W, Zhou T, Liu N, Wang R, Jiang L, Huang J, Wang Y (2013) Molecular genetic characterization of rice seed lipoxygenase 3 and assessment of its effects on seed longevity. J Plant Biol 56:232–242

    Article  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  PubMed  Google Scholar 

  • McDonald CE (1979) Lipoxygenase and lutein bleaching activity of durum wheat semolina. Cereal Chem 56:84–89

    CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • McElroy D, Chamberlain DA, Moon E, Wilson KJ (1995) Development of gusA reporter gene constructs for cereal transformation: availability of plant transformation vectors from the CAMBIA molecular genetic resource service. Mol Breed 1:27–37

    Article  CAS  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgano MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  CAS  PubMed  Google Scholar 

  • Podolyan A, White J, Jordan B, Winefield C (2010) Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol 37:767–784

    Article  CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases: physiological and molecular features. J Plant Physiol 130:15–21

    Article  CAS  Google Scholar 

  • Roberts EH, Ellis RH (1989) Water and seed survival. Ann Bot 63:38–52

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgenson RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt NF, van Mechelen JR (1997) Expression of lipoxygenase isoenzymes in developing barley grains. Plant Sci 128:141–150

    Article  CAS  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen N, Fehr W, Johnson L, White P (1996) Oxidative stabilities of soybean oils that lack lipoxygenases. J Am Oil Chem Soc 73:1327–1336

    Article  CAS  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • Slaga TJ, Klein-Szanto AJP, Triplett LL, Yotti LP, Trosko JE (1981) Skin-tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science 213:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Smith MT, Berjak P (1995) Deteriorative changes associated with the loss of viability of stored desiccation-tolerant and desiccation-sensitive seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 701–746

    Google Scholar 

  • Song M, Wu Y, Zhang Y, Liu BM, Jiang JY, Xu X, Yu ZL (2007) Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Nucl Instrum Methods 265:495–500

    Article  CAS  Google Scholar 

  • Suzuki Y, Yasui T, Matsukura U, Terao J (1996) Oxidative stability of bran lipids from rice variety [Oryza sativa (L.)] lacking lipoxygenase-3 in seeds. J Agric Food Chem 44:3479–3483

    Article  CAS  Google Scholar 

  • Takano K (1993) Advances in cereal chemistry and technology in Japan. Cereal Food World 38:695–698

    CAS  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • van Mechelen JR, Schuurink RC, Smits M, Graner A, Douma AC, Sedee NJ, Schmitt NF, Valk BE (1999) Molecular characterization of two lipoxygenases from barley. Plant Mol Biol 39:1283–1298

    Article  PubMed  Google Scholar 

  • Verlotta A, De Simone V, Mastrangelo AM, Cattivelli L, Papa R, Trono D (2010) Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol 10:263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Croft KPC, Jarlfors U, Hildebrand DF (1999) Subcellular localization studies indicate that lipoxygenases 1 to 6 are not involved in lipid mobilization during soybean germination. Plant Physiol 120:227–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G-F, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen Q-H, Wang D, Zhang X (2011) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90 s in the control of wheat seedling growth and disease resistance. New Phytol 191:418–431

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 15:63–77

    Article  Google Scholar 

  • Wilson DO, McDonald MB (1986) The lipid peroxidation model of seed-aging. Seed Sci Tech 14:269–300

    CAS  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu Z, Lu Y, Wang Y, She D, Song M, Wu Y (2007) Effect of the absence of lipoxygenase isoenzymes on the storage characteristics of rice grains. J Stored Prod Res 43:87–91

    Article  CAS  Google Scholar 

  • Žilić S, Dodig D, Hadži-Tašković Šukalović V, Maksimović M, Saratlić G, Škrbić B (2010) Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities. Int J Food Sci Technol 45:1360–1367

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Agriculture of China (via grants 2008ZX08002-004, 2011ZX08002-004 and 2013ZX08002-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenying Dong or Daowen Wang.

Additional information

Zhenying Dong and Bo Feng have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Feng, B., Liang, H. et al. Grain-specific reduction in lipoxygenase activity improves flour color quality and seed longevity in common wheat. Mol Breeding 35, 150 (2015). https://doi.org/10.1007/s11032-015-0347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0347-9

Keywords

Navigation