Skip to main content

Advertisement

Log in

Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Tea is an important health drink which contributes significantly to the economy of Asian and African countries. India contributes about 29 % of the world’s total tea production where majority of the tea cultivated is Assam type (native to Assam, India). Apart from India, Assam type contributes to the majority of tea grown in tropical regions of Sri Lanka and Kenya as well. We have developed the first genetic linkage map in Indian beveragial tea using 234 DNA markers (AFLP and RAPD). The plausibility of the linkage group formation was compared using two-way pseudo-testcross approach (using maximum likelihood algorithm) and integrated approaches (using regression algorithm). Both the approaches generated linkage maps containing 18 linkage groups. The composition and order of markers in the corresponding linkage groups in both the maps showed significant congruence. Maximum likelihood algorithm could map 78.6 % of the markers with total map length of 8527.5 and 45.3 cM average distance between each marker. Regression algorithm could map 73.5 % of the total markers with total map length of 2051.7 and 14.96 cM average distance between each marker. Drought is the major abiotic stress responsible for heavy yield losses in cultivated tea all over the world. The present map was used to map the locus, AFLP_CS_87 that segregates with drought tolerance phenotype in both the maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banerjee B (1992) Selection and breeding of tea. In: Wilson KC, Clifford MN (eds) Tea cultivation to consumption. Chapman and Hall, London, pp 53–81

    Google Scholar 

  • Banerjee GD, Banerji S (2008) Global tea trade. In: Tea industry: a road map ahead. Abhijeet Publications, Delhi

  • Barrett BA, Kidwell K (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific North-west. Crop Sci 38:261–1271

    Google Scholar 

  • Basu M, Bera AB, Rajan A (2010) Tea statistics: global scenario. Inc J Tea Sci 8:121–124

    Google Scholar 

  • Behrend A, Borchert T, Spiller M, Hohe A (2013) AFLP-based genetic mapping of the “bud-flowering” trait in heather (Calluna vulgaris). BMC Genet 14:64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhagat RM, Baruah RD, Safique S (2010) Climate and tea [Camellia sinensis (L.) O. Kuntze] Production with special reference to North Eastern India: a review. J Environ Res Dev 4(4):1017–1028

  • Bradshaw JHD, Villar M, Watson BD, Otto KG, Stewart S, Stettler RF (1994) Molecular genetics of growth and development in Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor Appl Genet 89(2–3):167–178

    CAS  PubMed  Google Scholar 

  • Burgess PJ, Carr MKV (1996) Responses of young tea (Camellia sinensis) clones to drought and temperature. II. Dry matter production and partitioning. Exp Agric 32(04):377–394

    Article  Google Scholar 

  • Carlier JD, Sousa NH, Santo TE, d’Eeckenbrugge GC, Leitao JM (2012) A genetic map of pineapple (Ananas comosus (L.) Merr.) including SCAR, CAPS, SSR and EST-SSR markers. Mol Breed 29(1):245–260

    Article  CAS  Google Scholar 

  • Cartwright DA, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176(4):2521–2527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Slycken JV, Montagu MV, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158(2):787–809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Crop Pasture Sci 52(12):1089–1119

    Article  CAS  Google Scholar 

  • Chen X, Hao S, Wang L, Fang W, Wang Y, Li X (2012) Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia 67(2):347–351

    Article  Google Scholar 

  • Collard BCY, Mackill D (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Demeke TSB, Hucl P, Chibbar RN (1997) Random amplified polymorphic DNA (RAPD) in cereal improvement. Maydica 42:133–142

    Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, an morphological markers. Genome 44(5):783–790

    Article  CAS  PubMed  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109(6):1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33(4):660–668

    Article  CAS  Google Scholar 

  • Foisset N, Delourme R (1996) Segregation distortion in androgenic plants. In: Jain SM, Sopory SK,Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrecht, pp 189–201

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112(2):298–314

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137(4):1121–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Saikia H, Borchetia S, Kalita MC, Handique AK, Das S (2012) Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 12(3):543–563

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85(4):346–355

    Article  CAS  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8(29):299–309

    Google Scholar 

  • He Dan Y, Liu MCai, Pan H, Zhang Q (2014) The first genetic linkage map of Crape myrtle (Lagerstroemia) based on amplification fragment length polymorphisms and simple sequence repeats markers. Plant Breed 133(1):138–144

    Article  Google Scholar 

  • Hu CY, Lee TC, Tsai HT, Tsai YZ, Lin SF (2013) Construction of an integrated genetic map based on maternal and paternal lineages of tea (Camellia sinensis). Euphytica 191(1):141–152

    Article  Google Scholar 

  • Huang X, Zeller FJ, Hsam SLK, Wenze G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305

    Article  CAS  PubMed  Google Scholar 

  • Jain NK (1999) Global advances in tea science. Aravali Books International, New Delhi, p 882

    Google Scholar 

  • Jansen J (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122

    Article  CAS  Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ, Arusn P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43(4):649–655

    Article  CAS  PubMed  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3(1):9

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja PS, Sharma RK (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6(6):915–929

    Article  Google Scholar 

  • Keyser DE, Shu Q, Bockstaele EV, De Riek J (2010) Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol 11(1):1

    Article  PubMed Central  PubMed  Google Scholar 

  • Kigalu JM (2007) Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): yield responses. Phys Chem Earth Parts A/B/C 32(15):1098–1106

    Article  Google Scholar 

  • Knox MR, Ellis TNH (2002) Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics 162(2):861–873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175

    Article  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101(4):669–676

    Article  CAS  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70(03):237–250

    Article  Google Scholar 

  • Menz MA, Klein RR, Unruh NC, Rooney WL, Klein PE, Mullet JE (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44(4):1236–1244

    Article  CAS  Google Scholar 

  • Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2011) Genetic linkage maps of two interspecific grape crosses (Vitis sp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7(1):153–167

    Article  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14(10):389–394

    Article  PubMed  Google Scholar 

  • Muoki RC, Wachira FN, Pathak R, Kamunya SM (2007) Potential male gametophyte competition among Camellia sinensis genotypes in isolated biclonal seed orchards. Afr Crop Sci 15(2):59–66

  • Oliveira EJ, Vieira MLC, Garcia AAF, Munhoz CF, Margarido GRA, Consoli L, Matta FP, Moraes MC, Zucchi MI, Fungaro MHP (2008) An integrated molecular map of yellow passion fruit based on simultaneous maximum-likelihood estimation of linkage and linkage phases. J Am Soc Hortic Sci 133(1):35–41

    CAS  Google Scholar 

  • Park YH, Sensoy S, Wye C, Antonise R, Pelema J, Havey MJ (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43(6):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 96:238–245

    Article  Google Scholar 

  • Paterson AH (1996) Making genetic maps. In: Paterson AH (ed) Genome mapping in plants. Academic Press, San Diego, pp 23–39

    Google Scholar 

  • Porebski SL, Bailey G, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138(3):829–847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz R, Dendauw IJ, Bockstaele EV, Depicker A, Loose MD (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6(2):125–134

    Article  Google Scholar 

  • Schwarz G, Herz M, Huang XQ, Michalek W, Jahoor J, Wenzel G, Mohler V (2000) Application of fluorescent-based semi-automated AFLP analysis in barley and wheat. Theor Appl Genet 100:545–551

    Article  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49(5):545–555

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S et al (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121(4):731–739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. The Plant J 3(5):739–744

    Article  CAS  Google Scholar 

  • Takeda Y (1990) Cross compatibility of tea (Camellia sinensis) and its allied species in the genus Camellia. Jpn Agric Res Q 24(14):111–116

    Google Scholar 

  • Tan LQ, Wang LY, Wei K, Zhang CC, Wu LY, Qi GN, Cheng H, Zhang Q, Cui QM, Liang JB (2013) Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8(11):e81611

    Article  PubMed Central  PubMed  Google Scholar 

  • Taniguchi F, Furukawa K, Metoku SO, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci 62(3):263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thakur D, Das SC, Sabhapondit S, Tamuly P, Deka DK (2011) Antimicrob activities of Tocklai vegetative tea clones. Indian J Microbiol 51(4):450–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomo N, Fuchinoue Y, Fuchinoue H (1956) Studies on self-fertilization of the tea plant. Tea Res 7:14–20

    Article  Google Scholar 

  • Ubi BE, Fujimori M, Mano Y, Komatsu T (2004) A genetic linkage map of Rhodes grass based on an F1 pseudo-testcross population. Plant Breed 123(3):247–253

    Article  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2011) CaCl2 improves post-drought recovery potential in Camellia sinensis (L.) O. Kuntze. Plant Cell Rep 30(4):495–503

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4.0, software for the calculation of genetic linkage maps. Wageningen, Kyazama BV

  • Vorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  Google Scholar 

  • Wang D, Li Y, Li L, Wei Y, Li Z (2014) The first genetic linkage map of Eucommia ulmoides. J Genet 93(1):13

    Article  CAS  PubMed  Google Scholar 

  • Wood DJ, Barua DN (1958) Species hybrids of tea. Nature 181:1674–1675

    Article  Google Scholar 

  • Woolbright SA, DiFazio SP, Yin T, Martinsen GD, Zhang X, Allan GJ, Whitham TG, Keim P (2008) A dense linkage map of hybrid cottonwood (Populus fremontii × P. angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree. Heredity 100(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Zhang X, Cai H, Huang L, Peng Y, Ma X (2010) Genetic maps of SSR and SRAP markers in diploid orchard grass (Dactylis glomerata L.) using the pseudo-testcross strategy. Genome 54(3):212–221

    Google Scholar 

  • Yamagishi M, Takeuchi Y, Tanaka I, Kono I, Murai K, Yano M (2010) Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J Genet 89(2):237

    Article  PubMed  Google Scholar 

  • Yang WA, Goodwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

  • Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Department of Biotechnology, India for financial aid to carry out the research work and University of Delhi for the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Goel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1463 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali, S., Mamgain, A., Raina, S.N. et al. Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea. Mol Breeding 35, 112 (2015). https://doi.org/10.1007/s11032-015-0306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0306-5

Keywords

Navigation