Skip to main content
Log in

Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Next-generation sequencing (NGS) technologies open up a wealth of opportunities for plant breeding and genomic research and change the paradigms of DNA marker detection, genotyping, and gene discovery. Abundant genomic resources have been generated using a whole-genome resequencing (WGR) strategy and utilized in genome-wide association, genome diversity, and evolution studies in many crops with a reference genome such as rice and maize. The WGR-based quantitative trait loci mapping approach developed in soybean combines single nucleotide polymorphism (SNP) discovery, validation and genotyping and has the potential to identify candidate genes and causal SNPs without a time-consuming fine-mapping process. Given that this approach solves issues caused by genome duplications and repetitive sequences, it can be widely utilized in crops with a reference genome. The combination of WGR with bulked segregant analysis provides a rapid way to identify genes or causal mutations. Currently, DNA sequencing technologies are being improved rapidly. Third-generation sequencing platforms can overcome some inherent disadvantages of NGS and are expected to promote the application of WGR-based approaches and revolutionize plant breeding, genomic and genetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BSA:

Bulked segregant analysis

CNV:

Copy number variation

GBS:

Genotyping by sequencing

GWA:

Genome-wide association

HMM:

Hidden Markov model

LD:

Linkage disequilibrium

MPR:

Maximum parsimony of recombination

MSG:

Multiplexed shotgun genotyping

NGM:

Next-generation mapping

NGS:

Next-generation sequencing

PAV:

Presence/absence variation

QTL:

Quantitative trait loci

QTN:

Quantitative trait nucleotides

RIL:

Recombinant inbred line

RRS:

Reduced representation sequencing

SMRT™:

Single-molecule real-time sequencing

SNP:

Single nucleotide polymorphism

TGS:

Third-generation sequencing

TILLING:

Targeting induced local lesions in genomes

tsMS™:

True single-molecule sequencing

WGR:

Whole-genome resequencing

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21(4):610–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D et al (2011) Next-generation mapping of Arabidopsis genes. Plant J Cell Mol Biol 67(4):715–725

    Article  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  CAS  PubMed  Google Scholar 

  • Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA et al (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes. BMC Plant Biol 10(1):86

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46(7):714–721

    Article  CAS  PubMed  Google Scholar 

  • Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807

    Article  CAS  PubMed  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  PubMed  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338(6111):1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8(1):9

    Article  PubMed Central  PubMed  Google Scholar 

  • Deschamps S, la Rota M, Ratashak JP, Biddle P, Thureen D, Farmer A et al (2010) Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina genome analyzer. Plant Genome 3(1):53–68

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8(7):e68529. doi:10.1371/journal.pone.0068529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14(9):1812–1819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z-Y, Zhao S-C, He W-M, Guo L-B, Peng Y-L, Wang J-J et al (2013) Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc Natl Acad Sci USA 110(35):14492–14497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL et al (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q et al (2012a) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39. doi:10.1038/ng.1018

    Article  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q et al (2012b) A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497–501

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC et al (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11(1):38. doi:10.1186/1471-2164-11-38

    Article  PubMed Central  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S et al (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39(9):1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572. doi:10.1038/ng.2987

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7(5):e36406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Brown JWS, Schulman A, Langridge P, Platzer M et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716. doi:10.1038/nature11543

    CAS  PubMed  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106(30):12273–12278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26(20):4597–4602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS One 8(6):e67066. doi:10.1371/journal.pone.0067066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ et al (2014) The genetic architecture of maize height. Genetics 196(4):1337–1356. doi:10.1534/genetics.113.159152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5(3):92. doi:10.3835/plantgenome2012.05.0005

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108(17):6893–6898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012a) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. doi:10.1371/journal.pone.0032253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y et al (2012b) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome J 5(3):103. doi:10.3835/plantgenome2012.06.0006

    Article  CAS  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713. doi:10.1038/ng.3008

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6(8):550–551

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10(1):62. doi:10.1186/1471-2229-10-62

    Article  PubMed Central  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C et al (2013a) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C et al (2013b) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200(1):276–283

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107(1):472–477. doi:10.1073/pnas.0908007107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7(1):19

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. doi:10.1038/nature11119

    Article  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9(1):115

    Article  PubMed Central  PubMed  Google Scholar 

  • Uchida N, Sakamoto T, Kurata T, Tasaka M (2011) Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing. Plant Cell Physiol 52(4):716–722

    Article  CAS  PubMed  Google Scholar 

  • Van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2(11):e1172. doi:10.1371/journal.pone.0001172

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5(3):247–252

    Article  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y et al (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107(23):10578–10583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8(1):103. doi:10.1186/1471-2229-8-103

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111

    Article  CAS  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R et al (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110(33):13469–13474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Xie W, Wang J, Xing Y, Xu C, Li X et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595. doi:10.1371/journal.pone.0017595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J et al (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109(39):15847–15852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mentioning of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is a equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Bai, G. Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breeding 35, 33 (2015). https://doi.org/10.1007/s11032-015-0240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0240-6

Keywords

Navigation