Skip to main content
Log in

Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The need for chemical control of scab (Venturia pirina, V. nashicola) is the main barrier preventing sustainable pear production. As cultivars with durable resistance are not available yet commercially, the development of molecular markers for early selection is desirable to enhance the efficiency of breeding such cultivars. Interspecific pear progeny PEAR1 × PEAR2 derived from European (Pyrus communis) and Asian (P. pyrifolia and P. ussuriensis) pears was infected with three single-spore isolates of V. pirina using the droplet inoculation technique. Illumina Infinium® HD Assay technology was employed to genotype the progeny with single nucleotide polymorphism markers for map construction. With one linkage group missing in each parent, the parental maps covered 17 linkage groups in total, 1,132.3 and 1,136.8 centimorgan for the female and male parents, respectively. Resistance mapping resulted in the identification of seven quantitative trait loci (QTLs) by Kruskal–Wallis analysis. Parent PEAR1 contributed a QTL on linkage group (LG) 17 that was effective against all three scab isolates, while PEAR2 contributed one on LG7 that was effective against two isolates. The other five QTLs, on LG2 and LG5 of PEAR2, and LG7 and LG10 of PEAR1, displayed differential interactions, with each QTL being paired with a single incompatible isolate. Additive effects of combined resistance loci displayed a higher level of resistance than single loci, and the role of nonhost resistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe K, Kotobuki K (1998a) Inheritance of high resistance to Venturia nashicola Tanaka et Yamamoto in Japanese pear (Pyrus pyrifolia Nakai) and Chinese pear (P. ussuriensis Maxim.). J Jpn Soc Hort Sci 67:677–680

    Article  Google Scholar 

  • Abe K, Kotobuki K (1998b) Polygenic inheritance of necrotic reaction to pear scab (Venturia nashicola Tanaka et Yamamoto) in Japanese pear (Pyrus pyrifolia Nakai) and Chinese pear (P. ussuriensis Maxim.). J Jpn Soc Hort Sci 67:839–842

    Article  Google Scholar 

  • Abe K, Kotobuki K, Saito T, Terai O (2000) Inheritance of resistance to pear scab from European pears to Asian pears. J Jpn Soc Hort Sci 69:1–8

    Article  Google Scholar 

  • Abe K, Saito T, Terai O, Sato Y, Kotobuki K (2008) Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears. Plant Breed 127:407–412

    Article  Google Scholar 

  • Bell RL (1990) Pears (Pyrus). Acta Hort 290(2):655–697

    Google Scholar 

  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding. Volume I. Tree and tropical fruits. Wiley, Hoboken, pp 441–514

    Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  PubMed  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Tellier M, Guerif P, Denancé C, Durel C-E, Lespinasse Y (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genom 8:53–60

    Article  Google Scholar 

  • Brewer L, Alspach PA, Morgan C, Bus VGM (2009) Resistance to scab caused by V. pirina in interspecific pear (Pyrus spp.) hybrids. NZ J Crop Hort Sci 37:211–218

    Article  Google Scholar 

  • Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

    PubMed Central  PubMed  Google Scholar 

  • Bruzzese E, Hasan S (1983) A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathol 32:335–338

    Article  Google Scholar 

  • Bus V, van de Weg WE, Durel CE, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek B, Schouten H, Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hort 663:57–62

    CAS  Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Ann Rev Phytopathol 49:391–413

    Article  CAS  Google Scholar 

  • Bus V, Brewer L, Morgan C (2013) Observations on scab resistance in interspecific pear seedling families. Acta Hort 976:493–497

    Google Scholar 

  • Celton J-M, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS one 7(2):e31745. doi:10.1371/journal.pone.0031745

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Article  Google Scholar 

  • Chevalier M, Guerif P, Tellier M, Cheve F, Le Lezec M, Lespinasse Y, Filmon R (2002) Microscopic studies of scab resistance symptoms (Venturia pirina) on leaves of pear (Pyrus communis) cultivars. Acta Hort 596:543–546

    Google Scholar 

  • Chevalier M, Bernard C, Tellier M, Lespinasse Y, Filmond R, Le Lezec M (2004) Variability in the reaction of several pear (Pyrus communis) cultivars to different inocula of Venturia pirina. Acta Hort 663:177–181

    Google Scholar 

  • Chevalier M, Tellier M, Lespinasse Y, Caffier V (2008) How to optimize the Venturia pirina inoculation on pear leaves in greenhouse conditions? Acta Hort 800:913–919

    Google Scholar 

  • Cho KH, Shin IS, Kim KT, Suh EJ, Hong SS, Lee HJ (2009) Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.). J Hort Sci Biotech 84:619–624

    CAS  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunnigham JL (1972) A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64:906–911

    Article  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annl Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Fruits and nuts. Springer, Berlin, pp 1–62

    Chapter  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Critic Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Yanase H (2000) Venturia nashicola, the scab fungus of Japanese and Chinese pears: a species distinct from V. pirina. Mycol Res 104:755–759

    Article  Google Scholar 

  • Ishii H, Udagawa H, Nishimoto S, Tsuda T, Nakashima H (1992) Scab resistance in pear species and cultivars. Acta Phytopathol Entomol Hung 27:293–298

    Google Scholar 

  • Ishii H, Watanabe H, Tanabe K (2002) Venturia nashicola: pathological specialization on pears and control trial with resistance inducers. Acta Hort 587:613–621

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of resistance gene genetics, function, and evolution on a durable future. Ann Rev Phytopathol 51:291–319

    Article  CAS  Google Scholar 

  • Montanari S, Saeed M, Knaebel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel C-E, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8(10):e77022. doi:10.1371/journal.pone.0077022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker DM, Hilber UW, Bodmer M, Smith FD, Yao C, Koller W (1995) Production and transformation of conidia of Venturia inaequalis. Phytopathology 85:87–91

    Article  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genom 3:311–317

    Article  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    Article  CAS  PubMed  Google Scholar 

  • Shabi E, Katan T (1979) Genetics, pathogenicity, and stability of carbendazim-resistant isolates of Venturia pirina. Phytopathology 69:267–269

    Article  Google Scholar 

  • Shabi E, Rotem J, Loebenstein G (1973) Physiological races of Venturia pirina on pear. Phytopathology 63:41–43

    Article  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    Article  CAS  PubMed  Google Scholar 

  • Vondracek J (1982) Pear cultivars resistant to scab. In: Childers NF, van der Zwet T (eds) The pear cultivars to marketing. Horticultural Publications, Gainesville, FL, pp 420–424

    Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Westwood M, Bjornstad H (1971) Some fruit characteristics of interspecific hybrids and extent self-sterility in Pyrus. Bull Torrey Bot Club 98:22–24

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genom Res 23:396–408

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Kimura T, Sawamura Y, Takada N, Hirabayashi T, Imai T, Nishitani C (2009) Reference genetic linkage maps of European and Japanese pears. Acta Hort 814:599–602

    Google Scholar 

Download references

Acknowledgments

We thank Dianne Hyndman and Rosemary Rickman (AgResearch Invermay, New Zealand) for providing the Illumina genotyping service. We thank Dr Paul Johnston (PFR) for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. M. Bus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2014_172_MOESM1_ESM.docx

Supplemental material 1. The pedigrees of interspecific pear parents PEAR1 and PEAR2 used to map quantitative trait loci for scab resistance in this study. (DOCX 12 kb)

11032_2014_172_MOESM2_ESM.pptx

Supplemental material 2. Putative scab resistance QTLs on SNP maps of interspecific hybrid pears. Numbers on the left side indicate the distance in centimorgans (cM) from the top of each chromosome, and marker names (registered in NCBI) are presented on the right side. The marker most strongly associated with each of the QTLs is identified by their bold, red lettering, with the one broad-spectrum QTL also in italics. See Table 3 for the differential interactions between the Venturia pirina isolates and scab resistance QTLs identified by their most significant SNP marker. (PPTX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, K., Bastiaanse, H., Kim, Y.K. et al. Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breeding 34, 2179–2189 (2014). https://doi.org/10.1007/s11032-014-0172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0172-6

Keywords

Navigation