Skip to main content
Log in

Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Anthracnose (Colletotrichum sublineolum) is one of the most destructive diseases of sorghum [Sorghum bicolor (L.) Moench], affecting all aerial tissues of the plant. The most effective strategy for its control is the incorporation of resistance genes. The anthracnose resistance response present in the sorghum line SC112-14 (Cs-SC112) was therefore studied against pathotypes from Puerto Rico, Texas, Arkansas, and Georgia using F2 progenies and recombinant inbred lines. The results show that a series of nearest single loci at the distal region of chromosome 5 control the resistance responses against pathotypes from Puerto Rico, Texas, and Arkansas. Resistance loci against pathotypes from Texas and Puerto Rico are tightly linked and flanked by simple sequence repeat (SSR) markers Ch5-55.0 and Ch5-56.1, while the resistance locus against pathotypes from Arkansas is 9.5 cM below SSR marker Ch5-56.1. The resistance locus against pathotypes from Georgia is not located in the distal region of chromosome 5, and its location could not be determined. Comparative analysis confirmed that the region associated with these three loci is not associated with the anthracnose resistance locus Cg1, which was previously mapped in the distal region of the same chromosome. The dominant mode of action against pathotypes from Puerto Rico suggests that these resistances sources can be beneficial for sorghum hybrid production. The durability of anthracnose resistance in sorghum depends on the adequate use of multiple resistance sources. Thus, the knowledge and genetic markers developed herein provide tools to initiate the pyramiding of multiple anthracnose resistance loci through marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali MEK, Warren HL (1987) Physiological races of Colletotrichum graminicola on sorghum. Plant Dis 71:402–404

    Google Scholar 

  • Biruma M, Martin T, Fridborg I, Okori P, Dixelius C (2012) Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum. Theor Appl Genet 124:1005–1015

    CAS  PubMed  Google Scholar 

  • Boora KS, Frederiksen R, Magill C (1998) DNA-based markers for a recessive gene conferring anthracnose resistance in sorghum. Crop Sci 38:1708–1709

    CAS  Google Scholar 

  • Cardwell KF, Hepperly PR, Frederiksen RA (1989) Pathotypes of Colletotrichum graminicola and seed transmission of sorghum anthracnose. Plant Dis 73:255–257

    Google Scholar 

  • Casela CR, Ferreira AS, Schaffert RE (1992) Physiological races of Colletotrichum graminicola in Brazil. In: Milliano WAJ et al (eds) Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 209–212

    Google Scholar 

  • Coleman OH, Stokes IE (1954) The inheritance of resistance to stalk red rot in sorghum. Agron J 46:61–63

    Google Scholar 

  • Cuevas HE, Prom LK, Erpelding JE, Brotons V (2014) Assessments of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm. Plant Breeding 133(2):234–242. doi:10.1111/pbr.12133

    Google Scholar 

  • Erpelding JE (2007) Inheritance of anthracnose resistance for the sorghum cultivar redlan. Plant Pathol J 6:187–190

    Google Scholar 

  • Erpelding JE, Prom LK (2004) Evaluation of Malian sorghum germplasm for resistance against anthracnose. Plant Pathol 3:65–71

    Google Scholar 

  • Erpelding J, Prom LK (2006) Variation for anthracnose resistance within the sorghum germplasm collection from Mozambique, Africa. Plant Pathol 5:28–34

    Google Scholar 

  • FAO (2012) Food and Agriculture Organization. FAOSTAT data. http://faostat.fao.org/site/339/default.aspx. Accessed 15 April 2014

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    CAS  Google Scholar 

  • Kofler R, Schlotterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (2009) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations (vol 1 pg 174, 1987). Genomics 93:398–398

    CAS  Google Scholar 

  • Liu SC, Kowalski SP, Lan TH, Feldmann IA, Paterson AH (1996) Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142:247–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    CAS  PubMed  Google Scholar 

  • Marley PS, Thakur RP, Ajayi O (2001) Variation among foliar isolates of Colletotrichum sublineolum of sorghum in Nigeria. Field Crops Res 69:133–142

    Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    CAS  PubMed  Google Scholar 

  • Mehta PJ, Wiltse CC, Rooney WL, Collins SD, Frederiksen RA, Hess DE, Chisi M, TeBeest DO (2005) Classification and inheritance of genetic resistance to anthracnose in sorghum. Field Crops Res 93:1–9

    Google Scholar 

  • Mohan SM, Madhusudhana R, Mathur K, Chakravarthi DVN, Rathore S, Reddy RN, Satish K, Srinivas G, Mani NS, Seetharama N (2010) Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 176:199–211

    Google Scholar 

  • Moore J, TeBeest D (2005) Pathotypes of Colletotrichum sublineolum in Arkansas. Phytopathology 95(6):S71

  • Moore JW, Ditmore M, TeBeest DO (2008) Pathotypes of Colletotrichum sublineolum in Arkansas. Plant Dis 92:1415–1420

    Google Scholar 

  • Moore JW, Ditmore M, TeBeest DO (2009) The effect of cropping history on grain sorghum yields and anthracnose severity in Arkansas. Crop Prot 28:737

    Google Scholar 

  • Pande S, Mughogho LK, Bandyopadhyay R, Karunakar RI (1991) Variation in pathogenicity and cultural characteristics of sorghum isolates of Colletotrichum graminicola in India. Plant Dis 75:778–783

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Perumal R, Menz MA, Mehta PJ, Katile S, Gutierrez-Rojas LA, Klein RR, Klein PE, Prom LK, Schlueter JA, Rooney WL, Magill CW (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606

    Google Scholar 

  • Prom LK, Perumal R, Erpelding JE, Isakeit T, Montes-Garcia N, Magill CW (2009) A pictorial technique for mass screening of sorghum germplasm for anthracnose (Colletotrichum sublineolum) resistance. Open Agric J 3:20–25

    Google Scholar 

  • Prom LK, Erpelding J, Perumal R, Isakeit T, Cuevas HE (2012a) Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose. Am J Plant Sci 3:125–129

    Google Scholar 

  • Prom LK, Perumal R, Erattaimuthu SR, Little CR, No EG, Erpelding JE, Rooney WL, Odvody GN, Magill CW (2012b) Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur J Plant Pathol 133:671–685

    Google Scholar 

  • Rosenow DT, Fredericksen RA (1982) Breeding for disease resistance in sorghum. In House LR et al (eds) Sorghum in the eighties, proceedings of the international symposium on sorghum. Pantancheru, AP, India, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, pp 447–455

  • Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermeris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 211–248

    Google Scholar 

  • Tenkouano A (1993) Genetic and ontogenic analysis of anthracnose resistance in Sorghum bicolor (L.) Moench. Ph.D. Dissertation, Texas A&M University, College Station, TX

  • Thakur RP, Mathur K (2000) Anthracnose. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases. The American Phytopathology Society, St. Paul, pp 10–12

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:1649–1657

    CAS  PubMed  Google Scholar 

  • USDA-ARS N.G.R.P. (2013) Germplasm Resources Information Network-(GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl. 5 Nov 2013

  • Valerio HM, Resende MA, Weikert-Oliveira RCB, Casela CR (2005) Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia 159:449–459

    CAS  PubMed  Google Scholar 

  • Vermerris W (2008) Genetic improvement of bioenergy crops. Springer, New York

    Google Scholar 

  • Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP (R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo E. Cuevas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, H.E., Prom, L.K. & Erpelding, J.E. Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Mol Breeding 34, 1943–1953 (2014). https://doi.org/10.1007/s11032-014-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0151-y

Keywords

Navigation