Skip to main content
Log in

Development of STS markers for Verticillium wilt resistance in cotton based on RGA–AFLP analysis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Verticillium wilt (VW) is one of the most destructive diseases of cotton that decreases yield and quality. Identification of resistance gene analogs (RGAs) can provide potential candidate gene markers for marker-assisted selection (MAS) for VW resistance and cloning of VW resistance genes. The objective of this study was to convert RGA-targeted RGA–AFLP (amplified fragment length polymorphism) markers into sequence-tagged site (STS) markers. A total of 54 RGA–AFLP markers, including 28 from a backcross inbred line (BIL) population and 26 from a recombinant inbred line (RIL) population, were cloned and sequenced. Of the resulted 86 unique sequences, the majority were found to be homologous to genes, some of which showed similarity to genes encoding resistance-related products. A total of 163 STS primer pairs were designed and screened in the BIL population, 72 of which were also screened in the RIL population, resulting in 21 polymorphic STS markers in the BIL population and seven in the RIL population. Twelve STS markers were mapped onto eight chromosomes or linkage groups in the BIL population, six of which were mapped on the same chromosomes with their original RGA–AFLP markers including two STS markers on c4 flanking two VW resistance quantitative trait loci. These STS markers will be useful in MAS in breeding cotton for VW resistance. This study represents the first attempt to successfully convert RGA–AFLP markers into STS for mapping resistance genes in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bell AA (1992) Verticillium wilt. In: Hillocks RJ (ed) Cotton diseases. CAB Intern, Wallingford, pp 87–126

    Google Scholar 

  • Bell AA (2001) Verticillium wilt. In: Kirkpatrick TL, Rothrock CS (eds) Compendium of cotton diseases. American Phyto-Pathological Society, St. Paul, pp 28–31

    Google Scholar 

  • Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    Article  CAS  Google Scholar 

  • Cantrell RG, Davis DD (2000) Registration of NM24016, an interspecific-derived cotton genetic stock. Crop Sci 40:1208

    Article  Google Scholar 

  • Chen X, Line R, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Duniway J (2002) Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337–1343

    Article  PubMed  CAS  Google Scholar 

  • Dussle C, Quint M, Xu M, Melchinger A, Lübberstedt T (2002) Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers. Theor Appl Genet 105:1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Fang H, Zhou H, Sanogo S, Flynn R, Percy R, Hughs S, Ulloa M, Jones D, Zhang J (2013) Quantitative trait locus mapping for Verticillium wilt resistance in a backcross inbred line population of cotton (Gossypium hirsutum × Gossypium barbadense) based on RGA–AFLP analysis. Euphytica 194:79–91

    Article  CAS  Google Scholar 

  • Fang H, Zhou H, Sanogo S, Lipka A, Fang D, Percy R, Hughs S, Jones D, Gore M, Zhang J (2014) Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton. Mol Breed 33:709–720

    Article  Google Scholar 

  • Gao Y, Xu Z, Jiao F, Yu H, Xiao B, Li Y, Lu X (2010) Cloning, structural features, and expression analysis of resistance gene analogs in tobacco. Mol Biol Rep 37:345–354

    Article  PubMed  CAS  Google Scholar 

  • Gore M, Percy R, Zhang JF, Fang DD, Cantrell RG (2012) Registration of the TM-1/NM24016 cotton recombinant inbred mapping population. J Plant Regist 6:1–4

    Article  Google Scholar 

  • Hinchliffe DJ, Lu Y, Potenza C, Segupta-Gopalan C, Cantrell RG, Zhang J (2005) Resistance gene analogue markers are mapped to homeologous chromosomes in cultivated tetraploid cotton. Theor Appl Genet 110:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Zhao J, Zhou L, Guo WZ, Zhang TZ (2009) Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in Upland cotton. Sci China, Ser C Life Sci 52:872–884

    Article  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47(1):39–62

    Article  PubMed  CAS  Google Scholar 

  • Kohel R, Richmond T, Lewis C (1970) Texas Marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10:670–671

    Article  Google Scholar 

  • Lu Y, Curtiss J, Percy RG, Hughs SE, Yu S, Zhang J (2009) DNA polymorphisms of genes involved in fiber development in a selected set of cultivated tetraploid cotton. Crop Sci 49:1695–1704

    Article  CAS  Google Scholar 

  • Mago R, Nair S, Mohan M (1999) Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet 99:50–57

    Article  CAS  Google Scholar 

  • McNeil MD, Hermann S, Jackson PA, Aitken KS (2011) Conversion of AFLP markers to high-throughput markers in a complex polyploid, sugarcane. Mol Breed 27:395–407

    Article  Google Scholar 

  • Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot D (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265:207–214

    Article  PubMed  CAS  Google Scholar 

  • Miller RNG, Bertioli DJ, Baurens FC, Santos CMR, Alves PC, Martins NF, Togawa RC, Junior MTS, Junior GJP (2008) Analysis of non-TIR NBS–LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning Z, Zhao R, Chen H, Ai N, Zhang X, Zhao J, Mei H, Wang P, Guo W, Zhang T (2013) Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to Verticillium wilt in Upland cotton cultivar Prema. Crop Sci 53:2304–2312

    Article  Google Scholar 

  • Niu C, Lu Y, Yuan Y, Percy R, Ulloa M, Zhang J (2011) Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA–AFLP analysis. Euphytica 181:65–76

    Article  Google Scholar 

  • Pang MX, Percy RG, Hughs SE, Jones DC, Zhang JF (2012) Identification of genes that were differentially expressed and associated with fiber yield and quality using cDNA-AFLP and a backcross inbred line population. Mol Breed 30:975–985

    Article  CAS  Google Scholar 

  • Percy RG, Cantrell RG, Zhang JF (2006) Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci 46:1311–1317

    Article  Google Scholar 

  • Shan X, Blake T, Talbert L (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    Article  CAS  Google Scholar 

  • Smith CW, Cothren JT (1999) Cotton: origin, history, technology, and production, vol 4. Wiley, New York

    Google Scholar 

  • Turcotte EL, Feaster RG (1992) Registration of ‘Pima S-7’ American Pima cotton. Crop Sci 32:1291

    Article  Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4.0, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182

    Article  PubMed  Google Scholar 

  • Weerasena JS, Steffenson BJ, Falk AB (2004) Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712–719

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Xu DH, Ban T (2004) Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 47:660–665

    Article  PubMed  CAS  Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the YR5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    PubMed  CAS  Google Scholar 

  • Yang C, Guo WZ, Li GY, Gao F, Lin SS, Zhang TZ (2008a) QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci 174:290–298

    Article  CAS  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008b) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723. QTLNetwork-2.0 user manual—software for mapping QTL with epistatic and QE interaction effects. www.ibi.zju.edu.cn/software/qtlnetwork

  • Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang JF, Yuan YL, Niu C, Hinchliffe DJ, Lu YZ, Yu SX, Percy RG, Ulloa M, Cantrell RG (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187

    Article  CAS  Google Scholar 

  • Zhang H, Wang Y, Zhang C, Wang X, Li H, Xu W (2011a) Isolation, characterization and expression analysis of resistance gene candidates in pear (Pyrus spp.). Sci Hortic 127:282–289

    Article  CAS  Google Scholar 

  • Zhang N, Wang S, Wang HY, Liu DQ (2011b) Isolation and characterization of NBS–LRR class resistance homologous gene from wheat. Sci Agric Sin 10:1151–1158

    CAS  Google Scholar 

  • Zhang JF, Sanogo S, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RG (2012) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica 187:147–160

    Article  Google Scholar 

  • Zhang JF, Fang H, Zhou HP, Sanogo S, Ma ZY (2014) Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton-a review. Crop Sci. doi:10.2135/cropsci2013.08.0550

    Google Scholar 

  • Zhou HP, Fang H, Sanogo S, Hughs SE, Jones DC, Zhang JF (2014) Evaluation of Verticillium wilt resistance in commercial cultivars and advanced breeding lines of cotton. Euphytica 196:437–448

    Article  Google Scholar 

  • Zhuang Y, Zhou X, Wang S (2012) Genetic diversity of NBS–LRR class disease-resistance gene analogs in cultivated and wild eggplants. Plant Syst Evol 298:1399–1406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfa Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Zhou, H., Sanogo, S. et al. Development of STS markers for Verticillium wilt resistance in cotton based on RGA–AFLP analysis. Mol Breeding 34, 917–926 (2014). https://doi.org/10.1007/s11032-014-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0085-4

Keywords

Navigation