Skip to main content
Log in

Genome-wide identification and analysis of candidate genes for disease resistance in tomato

  • Short Communication
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum L.) has served as an important model system for studying the genetics and molecular basis of resistance mechanisms in plants. An unprecedented challenge is now to capitalize on the genetic and genomic achievements obtained in this species. In this study, we show that information on the tomato genome can be used predictively to link resistance function with specific sequences. An integrated genomic approach for identifying new resistance (R) gene candidates was developed. An R gene functional map was created by co-localization of candidate pathogen recognition genes and anchoring molecular markers associated with resistance phenotypes. In-depth characterization of the identified pathogen recognition genes was performed. Finally, in order to highlight expressed pathogen recognition genes and to provide a first step in validation, the tomato transcriptome was explored and basic molecular analyses were conducted. Such methodology can help to better direct positional cloning, reducing the amount of effort required to identify a functional gene. The resulting candidate loci selected are available for exploiting their specific function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Andolfo G, Sanseverino W, Rombauts S, Van der Peer J, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197(1):223–237

    Article  CAS  PubMed  Google Scholar 

  • Caicedo AL, Schaal BA (2004) Heterogeneous evolutionary processes affect R-gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci USA 101:17444–17449

    Article  CAS  PubMed  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L (2012) Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep 31:973–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 64358:52

    Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with Tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20

    CAS  Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  CAS  PubMed  Google Scholar 

  • Martin GB, Williams JG, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Article  CAS  PubMed  Google Scholar 

  • Mazourek M, Cirulli ET, Collier SM, Landry LG, Kang BC, Quirin EA, Bradeen JM, Moffett P, Jahn MM (2009) The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 182:1351–1364

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32:736–744

    Article  CAS  PubMed  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyakawa T, Miyazono K, Sawano Y, Hatano K, Tanokura M (2009) Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Proteins 77:247–251

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics 155:309–322

    CAS  PubMed  Google Scholar 

  • Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytol Pathol 41:215–243

    CAS  Google Scholar 

  • Riely B, Martin G (2001) Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc Natl Acad Sci USA 98:2059–2064

    Article  CAS  PubMed  Google Scholar 

  • Sawano Y, Miyakawa T, Yamazaki H, Tanokura M, Hatano K (2007) Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds. Biol Chem 388:273–280

    Article  CAS  PubMed  Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Mark Walters for English language editing of the manuscript. This research was carried out within the GenoPOM-PRO Project funded by Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ercolano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1. List of markers used to build up the physical maps. (DOCX 34 kb)

Supplemental Table S2. List of candidate genes linked to the seven loci reported in Table 1. (DOCX 21 kb)

11032_2013_9928_MOESM3_ESM.docx

Supplemental Table S3. List of expressed predicted pathogen receptor genes co-localizing with R loci reported in Table 2. (DOCX 25 kb)

11032_2013_9928_MOESM4_ESM.docx

Supplemental Table S4. List of primers used for validation of pathogen recognition genes predicted in silico. (DOCX 24 kb)

11032_2013_9928_MOESM5_ESM.docx

Supplemental Table S5. Identical sites and pairwise identity scores of 10 selected amplicons with annotated SL2.40 gene sequences. (DOCX 62 kb)

11032_2013_9928_MOESM6_ESM.tif

Supplemental Figure S1. Phylogenetic analysis: panel-A) NBS proteins tree; panel-B) eLRR-Ser/Thr proteins tree; panel-C) Kinase proteins tree. (TIFF 2,306 kb)

Supplementary material 7 (TIFF 2,407 kb)

Supplementary material 8 (TIFF 2,327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andolfo, G., Sanseverino, W., Aversano, R. et al. Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Mol Breeding 33, 227–233 (2014). https://doi.org/10.1007/s11032-013-9928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9928-7

Keywords

Navigation