Skip to main content
Log in

Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Thinopyrum intermedium has been hybridized extensively with wheat (Triticum aestivum L.) and several genes for disease resistance have been introgressed to cultivated wheat. However, there are very few reports about the Th. intermedium-derived seed storage protein genes which have been transferred into a wheat background by chromosome manipulation. Our aim is to identify several wheat–Th. intermedium ssp. trichophorum derivatives, and document these lines by genomic in situ hybridization (GISH), molecular markers and seed storage protein analysis. We found that a novel Th. intermedium 1St#2 chromosome-specific high-molecular-weight glutenin subunit (HMW-GS) was transferred to the wheat–Thinopyrum derivative lines. The genomic sequence of the Thinopyrum-derived HMW-GS was characterized and designated Glu-1St#2x, since it resembled x-type glutenins in both the N-terminal domain and C-terminal domain. It is much shorter than that of reported HMW-GS genes. The Glu-1St#2x sequence was successfully expressed in Escherichia coli and resulted in the identical weight to the native protein. The GISH and newly developed chromosome Thinopyrum-specific DNA markers enabled physically location of Glu-1St#2x to the region FL0.60–1.00 on Th. intermedium 1St#2L chromosome arm. Phylogenetic analysis revealed that the Glu-1St#2x evolved earlier than other x-type HMW-GS homoeologues in modern wheat genomes. The effect of Glu-1St#2x on protein content, sodium dodecyl sulphate sedimentation value and improvement of solvent retention capacity in wheat background suggested that Th. intermedium chromosome 1St#2 may have potential for improvement of wheat end-product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of hexaploid wheat. Theor Appl Genet 77:689–700

    Article  CAS  Google Scholar 

  • Bettge AD, Morris CF, DeMacon VL, Kidwell KK (2002) Adaptation of AACC Method 56–11, solvent retention capacity, for use as an early generation selection tool for cultivar development. Cereal Chem 79:670–674

    Article  CAS  Google Scholar 

  • Cabrera A, Martin A, Barro F (2002) In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10:49–54

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Xu H, Li Z, Wang X, Wang D, Zhang A, Jia X, Zhang X (2007) Identification and characterization of a novel Ag. intermedium HMW-GS gene from T. Aestivum-Ag. intermedium addition lines TAI-I series. J Cereal Sci 45:293–301

    Article  CAS  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 141:580–586

    Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement, vol 16. Plenum Press, New York, pp 209–279

    Chapter  Google Scholar 

  • Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75

    Article  PubMed  CAS  Google Scholar 

  • Garg M, Tanaka H, Tsujimoto H (2008) Genetic variation of Triticeae species for improvement of wheat end product quality. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) Proceedings of 11th international wheat genetics symposium, Brisbane, Australia, http://hdl.handle.net/2123/3239

  • Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H (2009a) Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci 50:358–363

    Article  CAS  Google Scholar 

  • Garg M, Tanaka H, Tsujimoto H (2009b) Exploration of Triticeae seed storage proteins for improvement of wheat end product quality. Breed Sci 59:519–528

    Article  CAS  Google Scholar 

  • Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M (2011) Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 52:269–277

    Article  PubMed  Google Scholar 

  • Gyawali YP, Nasuda S, Endo TR (2010) A cytological map of the short arm of Rye chromosome 1R constructed with 1R dissection stocks of common wheat and PCR-based markers. Cytogenet Genome Res 129:224–233

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373–378

    Article  CAS  Google Scholar 

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Harberd NP, Bartels D, Thompson RD (1986) DNA restriction fragment variation in the gene family encoding high molecular weight (HMW) glutenin subunits of wheat. Biochem Genet 24:579–596

    Article  PubMed  CAS  Google Scholar 

  • Hu LJ (2011) Molecular cytogenetic identification of several wheat-Thinopyrum intermedium ssp. trichophorum derivative lines. Dissertation, University of Electronic Science and Technology of China

  • Hu LJ, Li GR, Zeng ZX, Chang ZJ, Liu C, Zhou JP, Yang ZJ (2011) Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 177:169–177

    Article  Google Scholar 

  • Hu LJ, Li GR, Zhan HX, Liu C, Yang ZJ (2012) New St-chromosome specific molecular markers for identifying wheat-Thinopyrum intermedium derivative lines. J Genet 91:e69–e74

    PubMed  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo T, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  PubMed  CAS  Google Scholar 

  • Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically based map of chromosome 1B in common wheat. Genome 36:548–554

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GJ, Shepherd KW (1981) Chromosomal location of genes controlling seed protein in species related to wheat. Theor Appl Genet 59:25–31

    CAS  Google Scholar 

  • Lei MP, Li GR, Liu C, Yang ZJ (2012) Characterization of new wheat- Secale africanum derivatives reveals evolutionary aspects of chromosome 1R in rye. Genome 55:765–774

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  PubMed  CAS  Google Scholar 

  • Li ZX, Zhang XQ, Zhang HG, Cao SH, Wang DW, Hao ST, Li LH, Li HJ, Wang XP (2008) Isolation and characterization of a novel variant of HMW glutenin subunit gene from the St genome of Pseudoroegneria stipifolia. J Cereal Sci 47(3):429–437

    Article  Google Scholar 

  • Li F, Jiang XL, Wei YF, Xia GM, Liu SW (2012) Characterization of a novel type of HMW subunit of glutenin from Australopyrum retrofractum. Gene 492:65–70

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D (2003) Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor Appl Genet 106:1368–1378

    PubMed  CAS  Google Scholar 

  • Liu SW, Gao X, Xia GM (2008a) Characterization of the genes coding for the high molecular weight glutenin subunits in Lophopyrum elongatum. Hereditas 145:48–57

    Article  PubMed  Google Scholar 

  • Liu SW, Gao X, Xia GM (2008b) Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theor Appl Genet 116:325–334

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhu X, Tan Y, Liu S (2012) Isolation and characterization of Glu-1 genes from the St genome of Pseudoroegneria libanotica. Gene 499:154–159

    Article  PubMed  CAS  Google Scholar 

  • Mackie AM, Lagudah ES, Sharp PJ, Lafiandra D (1996) Molecular and biochemical characterization of HMW glutenin subunits from T. tauschii and the D genome of hexaploid wheat. J Cereal Sci 23:213–225

    Article  CAS  Google Scholar 

  • Mahelka V, Kopecký D, Paštová L (2011) On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 11:127

    Article  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X (2010) Catalogue of gene symbols for wheat: 2010 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/

  • Mei G, Zhang GQ, Ni FY, Luo QG, Wei YM, Zhang JS (2006) The relationship between micro-SRC value and wheat quality. J Northwest Univ Agric Forest 32:87–91

    Google Scholar 

  • Niu ZX, Klindworth DL, Wang RRC, Jauhar PP, Larkin PJ, Xu SS (2011) Characterization of HMW glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat. Crop Sci 51:667–677

    Article  CAS  Google Scholar 

  • Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and potential for manipulation by plant breeding. Phil Trans R Soc Lond Ser B 304:359–371

    Article  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Dilbirligi M, Sandhu D, Gill KS, Greene RA, Sorrells ME, Akhunov ED, Dvorák J, Linkiewicz AM, Dubcovsky J, Hossain KG, Kalavacharla V, Kianian SF, Mahmoud AA, Miftahudin, Conley EJ, Anderson JA, Pathan MS, Nguyen HT, McGuire PE, Qualset CO, Lapitan NL (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1992) The high molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    Article  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956

    PubMed  CAS  Google Scholar 

  • Singh NK, Shepherd KW, Cornish GB (1991) A simplified of SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci 14(3):203–208

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Google Scholar 

  • Wagoner P, Schauer A (1990) Intermediate wheatgrass as a perennial grain crop. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, OR, pp 143–145

    Google Scholar 

  • Wan Y, Wang D, Shewry PR, Halford NG (2002) Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theor Appl Genet 104:828–839

    Article  PubMed  CAS  Google Scholar 

  • Wang RRC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1994) Genomic symbols in the Triticeae. In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of 2nd international triticeae symposium. Utah State University Press, Logan, UT, pp 29–34

    Google Scholar 

  • Xia GM, Xiang FN, Zhou AF, Wang H, Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107:299–305

    Article  PubMed  CAS  Google Scholar 

  • Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149:11–17

    Article  CAS  Google Scholar 

  • Zhao JX, Ji WQ, Wu J, Chen XH, Cheng XN, Wang JW, Pang YH, Liu SH, Yang QH (2010) Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Res Crop Evol 57:387–394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We particularly thank Dr. I. Dundas at the University of Adelaide, Australia for reviewing the manuscript. We thank the National Natural Science Foundation of China (No. 31101143, 31171542, 31201203), and Fundamental Research Funds for the Central Universities of China (ZYGX2010J099, ZYGX2011J101) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Jun Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, GR., Liu, C., Li, CH. et al. Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Mol Breeding 31, 843–853 (2013). https://doi.org/10.1007/s11032-013-9838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9838-8

Keywords

Navigation