Skip to main content
Log in

Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Since it was commercialized in 2008, Liangxing 66 is one of the most widely grown cultivars of wheat (Triticum aestivum L.) in winter and facultative wheat-producing regions in northern China. This cultivar displays broad-spectrum resistance to isolates of powdery mildew. To identify the powdery mildew resistance gene in Liangxing 66, genetic analysis and molecular mapping were conducted using the F2 populations and F2:3 families derived from the reciprocal crosses of Liangxing 66 and the susceptible cultivar Jingshuang 16. A single dominant gene, tentatively designated PmLX66, conferred resistance in Liangxing 66 to the powdery mildew isolate E09. The results of molecular mapping indicated that this gene was located on the short arm of chromosome 5D and flanked by SCAR203 and Xcfd81 at genetic distances of 0.4 and 2.8 cM, respectively, which is similar to the position of locus Pm2. However, PmLX66 and Pm2 showed different reactions to five of the 42 isolates of powdery mildew tested. Together, these results indicated that PmLX66 was most likely an allele of Pm2. Based on its superior yield and agronomic performance, in combination with powdery mildew resistance, Liangxing 66 is useful as a promising parent for control of powdery mildew and for the development of new disease-resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam MA, Xue F, Wang CY, Ji WQ (2011) Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res 1:20–39

    Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Duan XY, Sheng BQ, Zhou YL, Xiang QJ (1998) Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophylactica Sin 25:31–36

    Google Scholar 

  • Duan SK, Xu YB, Wu XY (2002) Research progress of pathogen virulence, resistance genes and resistance breeding of wheat powdery mildew. J Triticeae Crops 22:83–86

    Google Scholar 

  • Hao YF, Liu AF, Wang YH, Feng DS, Gao JR, Li XF, Liu SB, Wang HG (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Hsam S, Huang X, Ernst F, Hartl L, Zeller F (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ (1997) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell.). 9. Cultivars, land races and breeding lines grown in China. Plant Breed 116:233–238

    Article  Google Scholar 

  • Huang XQ, Hsam SLK, Mohler V, Röder MS, Zeller FJ (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome 47:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Li GP, Chen PD, Zhang SZ, Wang XE, He ZH, Zhang Y, Zhao H, Huang HY, Zhou XC (2007) Effect of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica 155:305–313

    Article  Google Scholar 

  • Li GQ, Fang TL, Zhu J, Gao LL, Li S, Xie CJ, Yang ZM, Sun QX, Liu ZY (2009) Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin 35:1613–1619

    Article  CAS  Google Scholar 

  • Li HJ, Wang XM, Song FJ, Wu CP, Wu XF, Zhang N, Zhou Y, Zhang XY (2011) Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin 37:943–954

    Article  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/Exp version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Research, Cambridge

    Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Lutz J, Limpert E, Bartos P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L). Plant Breed 108:33–39

    Article  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Article  Google Scholar 

  • Ma HQ, Kong ZX, Fu BS, Li N, Zhang LX, Jia HY, Ma ZQ (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Baker EP (1970) Cytogenetical studies in wheat. 4. Chromosome location and linkage studies involving Pm2 locus for powdery mildew resistance. Euphytica 19:71–77

    Article  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: Proceedings of the 11th international wheat genetic symposium. University of Sydney Press, Sydney

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2011) Catalogue of gene symbols for wheat: 2011 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease–resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Pugsley AT, Carter MV (1953) The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci 6:335–346

    PubMed  CAS  Google Scholar 

  • Qiu YC, Sun XL, Zhou RH, Kong XY, Zhang SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 34:1267–1273

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.1 Manual. Exeter Software, Setauket

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet 90:655–656

    Article  PubMed  CAS  Google Scholar 

  • Wang LM, Zhu YL, Li XF, Wang HG (2011) Screening for SSR markers linked to wheat powdery mildew resistance gene Pm2. Acta Phytophylactica Sin 38:216–220

    CAS  Google Scholar 

  • Wu XH, Luo PG, Yan BJ, Ren ZL (2006) Researches on powdery mildew resistance genes and its breeding in wheat. Chin Agric Sci Bull 22:346–351

    CAS  Google Scholar 

  • Xu HX, Yao GQ, Xiong L, Yang LL, Jiang YM, Fu BS, Zhao WF, Zhang ZZ, Zhang CQ, Ma ZQ (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477

    Article  PubMed  CAS  Google Scholar 

  • Xu WG, Li CX, Hu L, Zhang L, Zhang JZ, Dong HB, Wang GS (2010) Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breed 26:31–38

    Article  CAS  Google Scholar 

  • Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ, Zhou YL, Duan XY, Yang TM, Sun QX, Liu ZY (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

  • Zhuang QS (2003) Wheat improvement and pedigree analysis in China. China Agriculture Press (in Chinese), Beijing

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Y. L. Zhou for providing the powdery mildew isolates E03, E05, E09, E11, E16, E18, E20, E21, and E22. This study was financially supported by the Core Research Budget of Nonprofit Governmental Research Institution (20105), the earmarked fund for Modern Agro-industry Technology Research System (CARS-3-1), the National Program for Developing New Transgenic Varieties in China (2009ZX08002-006B), and the National High-Tech Research and Development Program of China (2011AA100103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diaoguo An or Hongjie Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhao, Z., Song, F. et al. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breeding 30, 1737–1745 (2012). https://doi.org/10.1007/s11032-012-9757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9757-0

Keywords

Navigation