Skip to main content
Log in

In silico single nucleotide polymorphism discovery and application to marker-assisted selection in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The general approach to discovering single nucleotide polymorphisms (SNPs) requires locus-specific PCR amplification. To enhance the efficiency of SNP discovery in soybean, we used in silico analysis prior to re-sequencing as it is both rapid and inexpensive. In silico analysis was performed to detect putative SNPs in expressed sequence tag (EST) contigs assembled using publicly available ESTs from 18 different soybean genotypes. SNP validation by direct sequencing of six soybean cultivars and a wild soybean genotype was performed with PCR primers designed from EST contigs aligned with at least 5 out of 18 soybean genotypes. The efficiency of SNP discovery among the confirmation genotypes was 81.2%. Furthermore, the efficiency of SNP discovery between Pureunkong and Jinpumkong 2 genotypes was 47.4%, a great improvement on our previous finding based on direct sequencing (22.3%). Using SNPs between Pureunkong and Jinpumkong 2 in EST contigs, which were linked to target traits, we were able to genotype 90 recombinant inbred lines by high-resolution melting (HRM) analysis. These SNPs were mapped onto the expected locations near quantitative trait loci for water-logging tolerance and seed pectin concentration. Thus, our protocol for HRM analysis can be applied successfully not only to genetic diversity studies, but also to marker-assisted selection (MAS). Our study suggests that a combination of in silico analysis and HRM can reduce the cost and labor involved in developing SNP markers and genotyping SNPs. The markers developed in this study can also easily be applied to MAS if the markers are associated with the target traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918. doi:10.1111/j.1365-313X.2007.03193.x

    Article  PubMed  CAS  Google Scholar 

  • Cai CM, Van K, Kim MY, Jun TH, Shin JH, Cho SY, Lee YS, Lee SH (2008) SNP discovery, linkage analysis and microsynteny in tentative consensus sequences derived from roots cDNA in a supernodulating soybean mutant. Euphytica 164:189–197. doi:10.1007/s10681-008-9702-9

    Article  CAS  Google Scholar 

  • Chantarangsu S, Cressey T, Mahasirimongkol S, Tawon Y, Ngo-Giang-Huong N, Jourdain G, Lallemant M, Chantratita W (2007) Comparison of the TaqMan and LightCycler systems in evaluation of CYP2B6 516G > T polymorphism. Mol Cell Probes 21:408–411. doi:10.1016/j.mcp.2007.06.008

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Hyten DL, Lakshmi KM, Qijian S, Julian MC, Charles VQ, Kevin C, Lark KG, Robert SR, Mun SY, Eun YH, Seung IY, Nevin DY, Randy CS, Curtis PVT, James ES, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and SNP analysis. Genetics 176:685–696. doi:10.1534/genetics.107.070821

    Article  PubMed  CAS  Google Scholar 

  • Cogan NOI, Dratyton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, Smit KF, Spangenberg GC, Forster JW (2007) Validation of in silico-predicted genic SNPs in white clover (Trifolium repens L.), an outbreeding allopolyploid species. Mol Genet Genomics 277:413–425. doi:10.1007/s00438-006-0198-5

    Google Scholar 

  • Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16:103–112. doi:10.1007/s11032-005-5911-2

    Article  Google Scholar 

  • Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607. doi:10.1111/j.1469-8137.2008.02588.x

    Article  PubMed  CAS  Google Scholar 

  • Dantec LL, Chagne D, Pot D, Cantin O, Garnier GP, Bedon F, Frigerio J, Chaumeil P, Leger P, Garcia V, Laigret F, Daruvar A, Plomion C (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol 54:461–470. doi:10.1023/B:PLAN.0000036376.11710.6f

    Article  PubMed  Google Scholar 

  • Dreher K, Khairallah M, Ribaut J, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234. doi:10.1023/A:1022820520673

    Article  Google Scholar 

  • Garritano S, Gemignani F, Voegele F, Dumont TN, Kelm FLC, Silva DD, Lesueur F, Landi S, Tavtigian SV (2009) Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genetics 10:5. doi:10.1186/1471-2156-10-5

    Article  PubMed  Google Scholar 

  • Grivet L, Glaszmann JC, Vincentz M, Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197. doi:10.1007/s00122-002-1075-1

    PubMed  CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Ha BK, Hussey RS, Boerma HR (2007) Development of SNP assays for marker-assisted selection of two Southern Root-Knot Nematode resistance QTL in soybean. Crop Sci 47:S73–S82. doi:10.2135/cropsci2006.10.0660tpg

    Article  Google Scholar 

  • Kim MY, Ha BK, Jun TW, Hwang EY, Van KJ, Kuk YI, Lee SH (2004) Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean. Euphytica 135:169–177. doi:10.1023/B:EUPH.0000014909.40136.20

    Article  CAS  Google Scholar 

  • Kim KD, Shin JH, Van K, Kim DH, Lee SH (2009) Dynamic rearrangements determine genome organization and useful traits in soybean. Plant Physiol 151:1066–1067. doi/10.1104/pp.109.141739

    Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Gen Genomics 270:24–33. doi:10.1007/s00438-003-0891-6

    Google Scholar 

  • Kristensen LS, Dobrovic A (2008) Direct genotyping of single nucleotide polymorphisms in methyl metabolism genes using probe-free high-resolution melting analysis. Cancer Epidemiol Biomarkers Prev 17:1240–1247. doi:10.1158/1055-9965.EPI-07-2531

    Article  PubMed  CAS  Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349. doi:10.1007/s11032-005-1911-5

    Article  CAS  Google Scholar 

  • Laurie AD, George PM (2009) Evaluation of high-resolution melting analysis for screening the LDL receptor gene. Clin Biochem 42:528–535. doi:10.1016/j.clinbiochem.2008.11.015

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Walker DR, Cregan PB, Boerma HR (2004) Comparison of four flow cytometric SNP detection assays and their use in plant improvement. Theor Appl Genet 110:167–174. doi:10.1007/s00122-004-1827-1

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728. doi:10.1007/s00122-008-0813-4

    Article  PubMed  CAS  Google Scholar 

  • Liew M, Pryor R, Palais R, Meadows C, Erall M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164. doi:10.1373/clinchem.2004.032136

    Article  PubMed  CAS  Google Scholar 

  • Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stitziel NO, Hillier LD, Kwok PY, Gish WR (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:453–456. doi:10.1038/70570

    Article  Google Scholar 

  • Matukumalli LK, Grefenstette JJ, Hyten DL, Choi IY, Cregan PB, Tassell CPV (2006) Application of machine learning in SNP discovery. BMC Bioinformatics 7:4. doi:10.1186/1471-2105-7-4

    Article  PubMed  Google Scholar 

  • Pavy N, Parsons L, Paule C, MacKay J, Bousquet J (2006) Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs. BMC Genomics 7:174. doi:10.1186/1471-2164-7-174

    Article  PubMed  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi:10.1093/bioinformatics/btg034

    Article  PubMed  CAS  Google Scholar 

  • Picoult NL, Ideker TE, Pohl MG, Taylor DL, Donaldson MA, Nickerson DA, Boyce JM (1999) Mining SNPs from EST database. Genome Res 9:167–174

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6

    Article  PubMed  CAS  Google Scholar 

  • Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39:1017–1026

    Article  CAS  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell OT, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257. doi:10.1101/gr.728603

    Article  PubMed  Google Scholar 

  • Sémon M, Wolfe KH (2008) Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc Natl Acad Sci USA 105:8333–8338. doi:10.1073/pnas.0708705105

    Article  PubMed  Google Scholar 

  • Shin JH, Van K, Kim DH, Kim KD, Jang YE, Choi BS, Kim MY, Lee SH (2008) The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. BMC Plant Biol 8:133. doi:10.1186/1471-2229-8-133

    Article  PubMed  Google Scholar 

  • Shure M, Wessler S, Fedoreff N (1983) Molecular identification and isolation of waxy locus in maize. Cell 35:225–233

    Article  PubMed  CAS  Google Scholar 

  • Stombaugh SK, Orf JH, Jung HG, Chase K, Lark KG, Somers DA (2004) Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci 44:2101–2106

    Article  CAS  Google Scholar 

  • Studer B, Jensen LB, Fiil A, Asp T (2009) “Blind” mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis. Mol Breed 24:191–199. doi:10.1007/s11032-009-9291-x

    Article  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Van K, Hwang EY, Kim MY, Kim YH, Cho YI, Cregan PB, Lee SH (2004) Discovery of single nucleotide polymorphisms in soybean using primers designed from ESTs. Euphytica 139:147–157. doi:10.1007/s10681-004-2561-0

    Article  CAS  Google Scholar 

  • Van K, Hwang EY, Kim MY, Park HJ, Lee SH, Cregan PB (2005) Discovery of SNPs in soybean genotypes frequently used as the parents of mapping populations in the United States and Korea. J Hered 96:529–535. doi:10.1093/jhered/esi069

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14. doi:10.1007/s00122-008-0870-8

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Moon J-K, Jeong N, Back K, Kim HM, Jeong S-C (2008) Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics 92:52–59

    Article  PubMed  CAS  Google Scholar 

  • Zenglu L, Nelson RL (2002) RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci 42:1737–1744

    Article  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Tassell CPV, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (no. CG3121) from the Crop Functional Genomics Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea, and also supported by the Korea Rural Development Administration, BioGreen 21 Project 20080401034010, the Republic of Korea. We also thank the National Instrumentation Center for Environmental Management at Seoul National University in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaisan, T., Van, K., Kim, M.Y. et al. In silico single nucleotide polymorphism discovery and application to marker-assisted selection in soybean. Mol Breeding 29, 221–233 (2012). https://doi.org/10.1007/s11032-010-9541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9541-y

Keywords

Navigation