Skip to main content
Log in

Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Powdery mildew and scald can cause significant yield loss in barley. In order to identify new resistance genes for powdery mildew and scald in barley, two barley doubled haploid (DH) populations were screened for adult plant resistance in the field and glasshouse under natural infection. The mapping populations included 92 DH lines from the cross of TX9425 × Franklin and 177 DH lines from the cross of Yerong × Franklin. Two quantitative trait loci (QTL) for resistance to powdery mildew were identified in the TX9425 × Franklin population. These QTL were mapped to chromosomes 7H and 5H, respectively. The phenotypic variation explained by the two QTL detected in this population was 22 and 17%, respectively. Three significant QTL were identified from the Yerong × Franklin population for the resistance to powdery mildew; the major one, detected on the short arm of chromosome 1H, explained 66% of phenotypic variation. The major QTL for scald resistance, identified from two different populations which shared a common parent, Franklin, were mapped in the similar position on 3H. However, the Franklin allele provided resistance to one population but susceptibility to the other population. The Yerong allele on 3H showed much better resistance to scald than the Franklin allele, which has not been reported before. Using high-density maps for both populations, some markers which were very close to the resistance genes were identified. Transgression beyond the parents in disease resistances of the DH populations indicates that both small-effect QTLs and genetic background may also have significant contributions towards the resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott DC, Burdon JJ, Brown AHD (1992) Genes for scald resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica 61:225–231

    Article  CAS  Google Scholar 

  • Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. Heredity 86(2):152–153

    CAS  Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L). Theor Appl Genet 90:294–302

    Article  CAS  Google Scholar 

  • Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localisation of genes for resistance against Blumeria graminis f.sp.hordei and Puccinia graminia in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontanuem) lines. Theor Appl Genet 106:353–362

    PubMed  CAS  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Brown AHD, Garvin DF, Burdon JJ, Abbott DC, Read BJ (1996) The effect of combining scald resistance genes on disease levels, yield and quality traits in barley. Theor Appl Genet 93:361–366

    Article  CAS  Google Scholar 

  • Calub AG, Dunn GM, Routley DG (1973) Effects of genetic background on monogenic resistance to Helminthosporium turcicum in maize (Zea mays L.). Crop Sci 13:561–563

    Article  Google Scholar 

  • Chelkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44(3):291–309

    PubMed  Google Scholar 

  • Chen KC, Boyd WJR, Khan TN (1990) Distribution, severity and economic importance of powdery mildew of barley in Western Australia. Aust J Exp Agric 30:379–385

    Article  Google Scholar 

  • Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res 57:961–965

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 140:843–856

    Google Scholar 

  • Freialdenhoven A, Scherag B, Hollricher K, Collinge DB, Thordal-Christensen H, Schulze-Lefert P (1994) Nar-1 and Nar-2, two loci required for Mla12 -specified race-specific resistance to powdery mildew in barley. Plant Cell 6:983–994

    Article  PubMed  CAS  Google Scholar 

  • Garvin DF, Brown AHD, Burdon JJ (1997) Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor Appl Genet 94:1086–1091

    Article  CAS  Google Scholar 

  • Garvin DF, Brown AHD, Raman H, Read BJ (2000) Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119:193–196

    Article  CAS  Google Scholar 

  • Grønnerød S, Marøy AG, MacKey J, Tekauz A, Penner GA, Bjørnstad Å (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica 126:235–250

    Article  Google Scholar 

  • Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35:1019–1025

    CAS  Google Scholar 

  • Hilbers S, Fischbeck G, Jahoor A (1992) Localization of the Laevigatum resistance gene MlLa against powdery mildew in the barley genome by use of RFLP markers. Plant Breed 109:335–338

    Article  CAS  Google Scholar 

  • Holland JB, Moser HS, O’Donoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37:1306–1316

    Article  Google Scholar 

  • Hovmøller MS, Caffier V, Jalli M, Andersen O, Besenhofer G, Czembor JH, Dreiseitl A, Felsenstein F, Fleck A, Feinrics F, Jonsson R, Limpert E, Mercer P, Plesnik S, Rashal I, Skinnes H, Slater S, Vronska O (2000) The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie 20:729–743

    Article  Google Scholar 

  • Hovmøller MS, Caffier V, Jalli M, Andersen O, Besenhofer G, Czembor JH, Dreiseitl A, Felsenstein F, Fleck A, Heinrics F, Jonsson R, Limpert E, Mercer P, Plesnik S, Rashal I, Skinnes H, Slater S, Vronska O (2001) The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie 21:193–194

    Article  Google Scholar 

  • Jensen J, Backes G, Skinnes H, Giese H (2002) QTLs for scald resistance in barley localised by a non-interval mapping procedure. Plant Breed 121:124–128

    Article  CAS  Google Scholar 

  • Jorgensen JH (1988) Screening of Hordeum vulgare for powdery mildew resistance. Nordisk Jordbrugsforskning 70:529

    Google Scholar 

  • Jorgensen HJ (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  • Kintzios S, Hahoor A, Fischbeck G (1995) Powdery-mildew-resistance genes Mla29 and Mla32 in H. spontaneum derived winter-barley lines. Plant Breed 114:265–266

    Article  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  • Lark KG, Orf J, Mansur LM (1994) Epistatic expression of quantitative trait loci (QTL) in soybean (Glycine max (L.) Merr.) determined by QTL association with RFLP alleles. Theor Appl Genet 88:486–489

    Article  CAS  Google Scholar 

  • Li HB, Vaillancourt R, Mendham NJ, Zhou MX (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom 9:401

    Article  Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A Major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910

    Article  PubMed  CAS  Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases, 2nd edn. APS Press/The American Phytophathological Society, St. Paul

    Google Scholar 

  • Molina-Cano JL, Simiand JP, Sopena A, Perez-Vendrell AM, Dorsch S, Rubiales D, Swanston JS, Jahoor A (2003) Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars. Theor Appl Genet 107:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Parlevliet JE, Kuiper HJ (1977) Partial resistance of barley to leaf rust, Puecinia hordei. IV. Effect on cultivar and development stage on infection frequency. Euphytica 26:249–255

    Article  Google Scholar 

  • Parlevliet JE, Ommeren AV (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro-plot tests and latent period. Euphytica 24:293–303

    Article  Google Scholar 

  • Pickering RA, Hill AM, Michel M, Timmerman-Vaughan GM (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288–1292

    Article  CAS  Google Scholar 

  • Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei. Theor Appl Genet 99:877–884

    Article  CAS  Google Scholar 

  • Qi X, Fufa F, Sijtsma D, Niks RE, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6:1–9

    Article  CAS  Google Scholar 

  • Read BJ, Macdonald AF (1990) Register of Australian winter cereal cultivars: Hordeum vulgare (Barley) cv. Yerong. Aust J Exp Agric 31:866

    Article  Google Scholar 

  • Reitan L, Grønnerød S, Ristad TP, Salamati S, Skinnes H, Waugh R, Bjørnstad A (2002) Characterization of resistance genes against scald (Rhynchosporium secalis (Oudem.) J. J. Davis) in barley (Hordeum vulgare L.) lines from central Norway, by means of genetic markers and pathotype tests. Euphytica 123:31–39

    Article  CAS  Google Scholar 

  • Sayed H, Backes G, Kayyal H, Yahyaoui A, Ceccarelli S, Grando S, Jahoor A, Baum M (2004) New molecular markers linked to qualitative and quantitative powdery mildew and scald resistance genes in barley for dry areas. Euphytica 135:225–228

    Article  CAS  Google Scholar 

  • Schonfeld M, Ragni A, Fischbeck G, Jahoor A (1996) RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f.sp.hordei) in barley. Theor Appl Genet 95:48–56

    Article  Google Scholar 

  • Schweizer GF, Baumer M, Daniel G, Rugel H, Roder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924

    Article  CAS  Google Scholar 

  • Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429

    Article  Google Scholar 

  • Spaner D, Shugar LP, Choo TM, Falak I, Briggs KG, Legge WG, Falk DE, Ullrich SE, Tinker NA, Steffenson BJ, Mather DE (1998) Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci 38:843–850

    Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Kyazma BV (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Wageningen

  • Vertigan WA (1991) Register of Australian winter cereal cultivars: Hordeum vulgare (Barley) cv. Franklin. Aust J Exp Agric 31:863

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Weibull J, Walther U, Sato K, Hubekub A, Kopahnke D, Proeseler G (2003) Diversity in resistance to abiotic stresses. In: Bothmer R, Hintum T, Knupffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsvier, The Netherlands, pp 143–178

    Chapter  Google Scholar 

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206

    Article  Google Scholar 

  • Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079

    Article  CAS  Google Scholar 

  • Williams KJ, Bogacki P, Scott L, Karakousis A, Wallwork H (2001) Mapping a gene for scald resistance in barley Line ‘B87/14’ and validation of microsatellite and RFLP markers for marker-assisted selection. Plant Breed 120:301–304

    Article  CAS  Google Scholar 

  • Yang J, Hu CC, Ye XZ, Zhu J (2005) QTL Network-2.0. Institute of. Bioinformatics, Zhejiang University, Hangzhou

    Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572

    Article  CAS  Google Scholar 

  • Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1–4

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Grains Research and Development Corporation (GRDC) of Australia (UT8) for providing financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.B., Zhou, M.X. Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breeding 27, 479–490 (2011). https://doi.org/10.1007/s11032-010-9445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9445-x

Keywords

Navigation