Skip to main content
Log in

Determination of partial genomic sequences and development of a CAPS system of the S-RNase gene for the identification of 22 S haplotypes of apple (Malus × domestica Borkh.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Information about self-incompatibility (S) genotypes of apple cultivars is important for the selection of pollen donors for fruit production and breeding. Although S genotyping systems using S haplotype-specific PCR of S-RNase, the pistil S gene, are useful, they are sometimes associated with false-positive/negative problems and are unable to identify new S haplotypes. The CAPS (cleaved amplified polymorphic sequences) system is expected to overcome these problems, however, the genomic sequences needed to establish this system are not available for many S-RNases. Here, we determined partial genomic sequences of eight S-RNases, and used the information to design new primer and to select 17 restriction enzymes for the discrimination of 22 S-RNases by CAPS. Using the system, the S genotypes of three cultivars were determined. The genomic sequence-based CAPS system would be useful for S genotyping and analyzing new S haplotypes of apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GSI:

Gametophytic self-incompatibility

PCR:

Polymerase chain reaction

RFLP:

Restriction fragment length polymorphism

CAPS:

Cleaved amplified polymorphic sequences

References

  • Bošković R, Tobutt KR (1999) Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29–43. doi:10.1023/A:1003516902123

    Article  Google Scholar 

  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • de Nettancourt D (1977) Incompatibility in Angiosperms. In: Frankel R et al (eds) Monographs on theoretical and applied genetics. Springer-Verlag, New York, pp 28–57

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer-Verlag, New York

    Google Scholar 

  • Ershadi A, Talaii AR (2007) Identification of S-alleles in 40 apple (Malus × domestica Borkh) cultivars by allele-specific PCR amplification. Acta Hortic 760:111–115

    CAS  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698. doi:10.1007/BF00223298

    Article  CAS  Google Scholar 

  • Kim HT, Hattori G, Hirata Y, Kim DI, Hwang JH, Shin YU, Nou IS (2006) Determination of self-incompatibility genotypes of Korean apple cultivars based on S-RNase PCR. J Plant Biol 49:448–454

    Article  CAS  Google Scholar 

  • Kim HT, Kakui H, Koba T, Hirata Y, Sassa H (2007) Cloning of a new S-RNase and development of a PCR-RFLP system for determination of the S-genotypes of Japanese pear. Breed Sci 57:159–164. doi:10.1270/jsbbs.57.159

    Article  Google Scholar 

  • Kim H, Park J, Hirata Y, Nou I (2008) Molecular characterization of two new S-RNases (‘S 31’ and ‘S 32’) in apple (Malus × domestica Borkh.). J Plant Biol 51:202–208

    Article  CAS  Google Scholar 

  • Kitahara K, Soejima J, Komatsu H, Fukui H, Matsumoto S (2000) Complete sequences of the S-genes ‘Sd-’ and ‘Sh-RNase’ cDNA in apple. HortScience 35:712–715

    CAS  Google Scholar 

  • Kobel F, Steinegger P, Anliker J (1939) Weitere Untersuchungen uber die Befruchtungsverhaltnisse der Apfel- und Birnsorten. Landw Jb Schweiz 53:160–191

    Google Scholar 

  • Komori S, Soejima J, Abe K, Kato H, Kotoda N, Kudo K (1999) Analyzes of S-allele genotypes of ‘McIntosh’, ‘Kitakami’, ‘Worcester Pearmain’, etc. J Jpn Soc Hortic Sci 68(suppl. 2):94 (article in Japanese)

    Google Scholar 

  • Komori S, Soejima J, Abe K, Kotoda N, Kato H (2000) Analysis of S-allele genotypes and genetic diversity in the apple. Acta Hortic 538:83–86

    Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410. doi:10.1046/j.1365-313X.1993.04020403.x

    Article  PubMed  CAS  Google Scholar 

  • Matityahu A, Stern RA, Schneider D, Goldway M (2005) Molecular identification of a new apple S-RNase-S29-cloned from ‘Anna’, a low-chilling-requirement cultivar. HortScience 40:850–851

    CAS  Google Scholar 

  • Matsumoto S, Furusawa Y (2005) Genomic DNA sequence of S 16c(=16) -RNase in apple: re-numbering of S 16(=27a) - and S 22(=27b) -allele to S 16a and S 16b . Sci Rep Rac Educ Gifu Univ (Nat. Sci.) 29:7–12

    Google Scholar 

  • Matsumoto S, Kitahara K (2000) Discovery of a new self-incompatibility allele in apple. HortScience 35:1329–1332

    CAS  Google Scholar 

  • Matsumoto S, Kitahara K, Komori S, Soejima J (1999a) A new S-allele in apple, ‘Sg’, and its similarity to the ‘Sf’ allele from Fuji. HortScience 34:708–710

    CAS  Google Scholar 

  • Matsumoto S, Komori S, Kitahara K, Imazu S, Soejima J (1999b) S-genotypes of 15 apple cultivars and self-compatibility of ‘Megumi’. J Jpn Soc Hortic Sci 68:236–241

    Article  CAS  Google Scholar 

  • Matsumoto S, Suzuki M, Kitahara K, Soejima J (2000) Possible involvement of a new S-gene ‘St-RNase’ (Accession No. AB035928) in the wild apple possessing high similarity to the ‘S3-’and ‘S5-RNase’ in the Japanese pear. Plant Physiol 122:620

    Google Scholar 

  • Matsumoto S, Hayashi S, Kitahara K, Soejima J (2001) Genomic DNA sequence encoding Malus × domestica Borkh. “Akane”, “Delicious” and Malus transitoria S-RNases. DNA Seq 12:381–383. doi:10.3109/10425170109084462

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Furusawa Y, Kitahara K, Komori S, Soejima J (2003a) Partial genomic sequences of S 6 -, S 12 -, S 13 -, S 14 -, S 17 -, S 19 -, and S 21 -RNases of apple and their allele designations. Plant Biotechnol 20:323–329

    CAS  Google Scholar 

  • Matsumoto S, Furusawa Y, Komatsu H, Soejima J (2003b) S-allele genotypes of apple pollenizers, cultivars and lineages including those resistant to scab. J Hortic Sci Biotechnol 78:634–637

    CAS  Google Scholar 

  • Matsumoto S, Kitahara K, Komatsu H, Abe K (2006) Cross-compatibility of apple cultivars possessing S-RNase alleles of similar sequence. J Hortic Sci Biotechnol 81:934–936

    CAS  Google Scholar 

  • Sassa H (2007) A technique to isolate DNA from woody and herbaceous plants by using a silica-based plasmid extraction column. Anal Biochem 363:166–167. doi:10.1016/j.ab.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  • Sassa H, Mase N, Hirano H, Ikehashi H (1994) Identification of self-incompatibility related glycoproteins in styles of apple (Malus × domestica). Theor Appl Genet 89:201–205. doi:10.1007/BF00225142

    Article  CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano T, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet 250:547–557

    PubMed  CAS  Google Scholar 

  • Schneider D, Stern RA, Eisikowitch D, Goldway M (2001) Analysis of S-alleles by PCR for determination of compatibility in the Red Delicious apple orchard. J Hortic Sci Biotechnol 76:596–600

    CAS  Google Scholar 

  • Takasaki T, Okada K, Castillo C, Moriya Y, Sato T, Sawamura Y, Norika N, Norika S, Nakanishi T (2004) Sequence of the S 9-RNase cDNA and PCR-RFLP system for discriminating S 1-to S 9-allele in Japanese pear. Euphytica 135:157–167. doi:10.1023/B:EUPH.0000014907.50575.d0

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Koike H, Makita H, Kobayashi Y, Takemae S, Miyagawa K (1989) New apple cultivar ‘Takane’. Nagano Fruit Tree Stn Rep 2:1–6 (article in Japanese)

    Google Scholar 

  • Verdoodt L, Van Haute A, Goderis IJ, De Witte K, Keulemans J, Broothaerts W (1998) Use of the multi-allelic self-incompatibility gene in apple to assess homozygosity in shoots obtained through haploid induction. Theor Appl Genet 96:294–300. doi:10.1007/s001220050739

    Article  CAS  Google Scholar 

  • Yoshida M, Muramatsu H, Minegishi T, Ogano R, Watanabe H, Kakizaki M, Tanaka S, Inagawa Y, Noda T (2002) A new apple variety ‘‘Maoi’’. Hokkaido Agr. Exp Stn Rep 82:41–48 (article in Japanese)

    Google Scholar 

Download references

Acknowledgments

We thank Mr. Y. Inagawa and Mr. M. Kurushima of Hokkaido Central Agricultural Experimental Station for their suggestions, and Dr. K. Abe of the Department of Apple Research, National Institute of Fruit Tree Science for plant materials. H.K. was supported by JSPS Postdoctoral Fellowship for Foreign Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Sassa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kakui, H., Kotoda, N. et al. Determination of partial genomic sequences and development of a CAPS system of the S-RNase gene for the identification of 22 S haplotypes of apple (Malus × domestica Borkh.). Mol Breeding 23, 463–472 (2009). https://doi.org/10.1007/s11032-008-9249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9249-4

Keywords

Navigation