Skip to main content

Advertisement

Log in

Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of crop yield and quality in infested fields. Field populations of G. pallida containing mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most relevant for potato cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to G. pallida would facilitate the development of resistant varieties. A tetraploid F1 hybrid family SR-Gpa segregating for quantitative resistance to G.␣pallida was developed and evaluated for resistance to G. pallida population ‘Chavornay’. Two subpopulations of 30 highly resistant and 30 susceptible individuals were selected and genotyped for 96 single nucleotide polymorphism (SNP) markers tagging 12 genomic regions on 10 potato chromosomes. Seven SNPs were found significantly linked to the nematode resistance, which were all located within a resistance ‘hotspot’ on potato chromosome V. A haplotype model for these seven SNPs was deduced from the SNP patterns observed in the SR-Gpa family. A PCR assay ‘HC’ was developed, which specifically detected the SNP haplotype c that was linked with high levels of nematode resistance. The HC marker was only found in accessions of S.␣vernei. Screening with the HC marker 34 potato varieties resistant to G. pallida pathotypes Pa2 and/or Pa3 and 22 susceptible varieties demonstrated that the HC marker was highly diagnostic for presence of high levels of resistance to G. pallida pathotype Pa2/Pa3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballvora A, Ercolano MR, Weiß J, Meksem K, Bormann C, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371

    Article  PubMed  CAS  Google Scholar 

  • Behringer P (1969) Feststellung zystenbildender Nematoden mit dem Biotest im Vierkammergefäß Mitt. Biol Bundesanst 136:5

    Google Scholar 

  • Bormann CA, Rickert AM, Castillo Ruiz RA, Paal J, Lübeck J, Strahwald J, Buhr K, Gebhardt C (2004) Tagging quantitative trait loci for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene markers. Mol Plant–Microbe Interac 17:1126–1138

    CAS  Google Scholar 

  • Bradshaw JE, Hackett CA, Meyer RC, Milbourne D, McNicol JW, Phillips MS, Waugh R (1998) Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum ssp. tuberosum) with a view to marker-assisted selection. Theor Appl Genet 97:202–210

    Article  Google Scholar 

  • Bryan G, McLean K, Pande B, Purvis A, Hackett CA, Bradshaw JE, Waugh R (2004) Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Mol Breed 14:105–116

    Article  CAS  Google Scholar 

  • Bryan GJ, McLean K, Bradshaw JE, De Jong WS, Phillips M, Castelli L, Waugh R (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105:68–77

    Article  PubMed  CAS  Google Scholar 

  • Caromel B, Mugniéry D, Lefebvre V, Andrzejewski S, Ellissèche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106:1517–1523

    PubMed  CAS  Google Scholar 

  • Caromel B, Mugniéry D, Kerlan MC, Andrzejewski S, Palloix A, Ellissèche D, Rousselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant– Microbe Interact 18:1186–1194

    PubMed  CAS  Google Scholar 

  • Evans K, Trudgill DL (1992) Pest aspects of potato production. Part 1. The nematode pests of potato. In: Harris P (ed), The Potato Crop 2nd edn. Chapman and Hall, London, pp 438–475

    Google Scholar 

  • Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler K (2004) Assessing genetic potential in germ plasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93--102

    Google Scholar 

  • Kort J, Ross H, Rumpenhorst H, Stone AR (1977) An international scheme for identifying and classifying pathotypes of potato cyst nematodes Globodera rostochiensis and G. pallida. Nematologica 23:333–339

    Article  Google Scholar 

  • Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang P, Tornqvist C-E, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo M-C, Jiang J, Buell CR, Baker B (2005) The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 44:37–51

    Article  PubMed  CAS  Google Scholar 

  • Kreike CM, de Koning JRA, Vinke JH, van Ooijen JW, Stiekema WJ (1994) Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769

    Article  Google Scholar 

  • Lo YM, Patel P, Newton CR, Markham AF, Fleming KA, Wainscoat JS (1991) Direct haplotype determination by double ARMS: specificity, sensitivity and genetic applications. Nucleic Acids Res 19:3561–3567

    PubMed  CAS  Google Scholar 

  • Okimoto R, Dodgston JB (1996) Improved PCR amplification of multiple specific alleles (PAMSA) using internally mismatched primers. Biotechiques 21:20– 26

    CAS  Google Scholar 

  • Phillips MS (1994) Inheritance of resistance to nematodes. In: Bradshaw JE, Mackay GR (eds), Potato Genetics. CAB International, Wallingford, pp 319–337

    Google Scholar 

  • Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C (2003) First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J 1:399–410

    Article  CAS  PubMed  Google Scholar 

  • Rickert AM, Premstaller A, Gebhardt C, Oefner PJ (2002) Genotyping of SNPs in a polyploid genome by pyrosequencing. Biotechniques 32:592–593, 596–598, 600

    PubMed  CAS  Google Scholar 

  • Ross H (1986) Potato breeding – problems and perspectives. Advances in Plant Breeding, Supplement 13 to Journal of Plant Breeding, Paul Parey, Berlin, Hamburg, pp 75–82

  • Rouppe van der Voort J, van der Vossen E, Bakker E, Overmars H, van Zandvoort P, Hutten R, Klein-Lankhorst R, Bakker J (1998) A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theor Appl Genet 96:654–661

    Article  CAS  Google Scholar 

  • Rouppe van der Voort J, van der Vossen E, Bakker E, Overmars H, van Zandvoort P, Hutten R, Klein-Lankhorst R, Bakker J (2000) Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theor Appl Genet 101:1222–1230

    Article  Google Scholar 

  • Sarkar G, Sommer SS (1991) Haplotyping by double PCR amplification of specific alleles. Biotechniques 10:436–440

    PubMed  CAS  Google Scholar 

  • Van der Vossen EAG, Rouppe van der Voort JNAM, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of this work under the GABI program (Genome analysis in the biological system of plants) by BMBF (Bundesministerium für Bildung und Forschung), Project No 0312290 CONQUEST (Genes CONtrolling QUantitativE traits of Solanum Tuberosum). Part of this work was carried out in the department of plant breeding research and yield physiology, headed by Francesco Salamini, and in the department of plant breeding research and genetics, headed by Maarten Koornneef.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Gebhardt.

Additional information

Amirali Sattarzadeh and Ute Achenbach contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattarzadeh, A., Achenbach, U., Lübeck, J. et al. Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3. Mol Breeding 18, 301–312 (2006). https://doi.org/10.1007/s11032-006-9026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9026-1

Keywords

Navigation