Skip to main content
Log in

An efficient one-pot synthesis of functionalized chromeno[4,3-b]pyridine derivatives under catalyst-free conditions

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A concise, efficient one-pot synthesis of functionalized chromeno[4,3-b]pyridine derivatives via a three-component reaction of 4-oxo-4H-chromene-3-carbaldehydes, malononitrile or cyanoacetates, and aromatic amines under catalyst-free conditions in an environmentally friendly medium (ethanol–water, 3:1 v/v) is described. This synthesis involves a group-assisted purification process, which avoids traditional recrystallization and chromatographic purification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Clardy J, Walsh C (2004) Lessons from natural and molecules. Nature 432:829–837. doi:10.1038/nature03194

    Article  CAS  PubMed  Google Scholar 

  2. Boger DL, Boyce CW, Labroli MA, Sehon CA, Jim Q (1999) Total synthesis of Ningalin A, Lamellarin O, Lukinol A, and Permethyl Storniamide A utilizing heterocyclic azadiene Diels–Alder reactions. J Am Chem Soc 121:54–62. doi:10.1021/ja982078+

    Article  CAS  Google Scholar 

  3. Frolova LV, Malik I, Uglinskii PY, Rogelj S, Kornienko A, Magedov IV (2011) Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett 52:6643–6645. doi:10.1016/j.tetlet.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan IA, Kulkarni MV, Gopal M, Shahabuddin MS, Sun CM (2005) Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. Bioorg Med Chem Lett 15:3584–3587. doi:10.1016/j.bmcl.2005.05.063

    Article  CAS  PubMed  Google Scholar 

  5. Gebhardt P, Dornberger K, Gollmick FA, Gräfe U, Härtl A, Görls H, Schlegel B, Hertweck C (2007) Quercinol, and anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill). Bioorg Med Chem Lett 17:2558–2560. doi:10.1016/j.bmcl.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  6. El-Essaway FA, El-Etraway AS (2014) Synthesis of novel chromeno[4,3-b]pyrazolo[4,3-e]pyridine derivatives with antimicrobial evaluation. J Heterocycl Chem 51:191–195. doi:10.1002/jhet.1687

    Article  Google Scholar 

  7. Patel AA, Lad HB, Pandya KR, Patel CV, Brahmbhatt DI (2013) Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridine-5-ones by two facile methods and evaluation of their antimicrobial activity. Med Chem Res 22:4745–4754. doi:10.1007/s00044-013-0489-4

    Article  CAS  Google Scholar 

  8. Ishikawa T, Oku Y, Tanaka T, Kumamoto T (1999) An approach to anti-HIV-1 active Calophyllum coumarin synthesis: an enantioselective construction of 2,3-dimethyl-4-chromanone ring by quinine-assisted intramolecular Michael-type addition. Tetrahedron Lett 40:3777–3780. doi:10.1016/S0040-4039(99)00607-3

    Article  CAS  Google Scholar 

  9. Thapa U, Thapa P, Karki R, Yun M, Choi JH, Jahng Y, Lee E, Jeon KH, Na Y, Ha EM, Cho WJ, Kwon Y, Lee ES (2011) Synthesis of 2,4-dioxyl chromenopyridines and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity realationship. Eur J Med Chem 46:3201–3209. doi:10.1016/j.ejmech.2011.04.029

    Article  CAS  PubMed  Google Scholar 

  10. Korotaev VY, Barkov AY, Sosnovskikh VY (2013) Synthesis of 5-(trifluoromethyl)-5H-chromeno [3,4-b]pyridines from 3-nitro-2-(trifluoromethyl)-2H-chromenes and aminoenones derived from acetylacetone and cyclic anilines. Tetrahedron Lett 54:3091–3093. doi:10.1016/j.tetlet.2013.03.137

    Article  CAS  Google Scholar 

  11. Hegab MI, Abdel-Fattah ASM, Yousef NM, Nour HF, Nostafa AM, Ellithey M (2007) Synthesis, X-ray structure, and pharmacological activity of some 6,6-disubstituted chromeno[4,3-b]- and chromeno-[3,4-c]-quinolines. Arch Pharm Chem Life Sci 340:396–403. doi:10.1002/ardp.200700089

    Article  CAS  Google Scholar 

  12. Bachi MD, Denenark D (1989) Cyclizations of ene radicals. Imidoyl radicals as intermediates in the synthesis of heterocyclic compounds. J Am Chem Soc 111:1886–1888. doi:10.1021/ja00187a057

    Article  CAS  Google Scholar 

  13. Palacios F, Alonso C, Amezua P, Rubiales G (2002) Synthesis of aza polycyclic compounds derived from pyrrolidine, indolizidine, and indole via intramolecular Diels–Alder cycloadditions of neutral 2-azadienes. J Org Chem 67:1941–1946. doi:10.1021/jo016325v

    Article  CAS  PubMed  Google Scholar 

  14. Demuner AJ, Barbosa LCA, Miranda ACM, Geraldo GC, Da Silva CM, Giberti S, Bertazzini M, Forlani G (2013) The furgal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain. J Nat Prod 76:2234–2245. doi:10.1021/np4005882

    Article  CAS  PubMed  Google Scholar 

  15. Kand D, Kalle AM, Talukdar P (2013) Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent off-on characteristics. Org Biomol Chem 11:1691–1701. doi:10.1039/C2OB27192C

    Article  CAS  PubMed  Google Scholar 

  16. Kudale AA, Miller DO, Dawe LN, Bodwell GJ (2011) Intramolecular Povarov reactions involving 3-aminocoumarins. Org Biomol Chem 9:7196–7206. doi:10.1039/C1OB05867C

    Article  CAS  PubMed  Google Scholar 

  17. Keskin S, Balci M (2015) Intramolecular heterocyclization of O-propargylated aromatic hydroxyaldehydes as an expedient route to substituted chromenopyridines under metal-free conditions. Org Lett 17:964–967. doi:10.1021/acs.orglett.5b00067

    Article  CAS  PubMed  Google Scholar 

  18. Goh KKK, Kim S, Zard SZ (2013) Free-radical variant for the synthesis of functionalized 1,5-diketones. Org Lett 15:4818–4821. doi:10.1021/ol402213k

    Article  CAS  PubMed  Google Scholar 

  19. Dolatkhah Z, Nasiri-Aghdam M, Bazgir A (2013) A three-component synthesis of benzochromeno- diazocines and chromenopyridines. Tetrahedron Lett 45:1960–1962. doi:10.1016/j.tetlet.2013.01.122

    Article  Google Scholar 

  20. Safaei-Ghomi J, Shahbazi-Alavi H, Heidari-Baghbahadorani H (2014) SnO nanoparticles as an efficient catalyst for one-pot synthesis of chromeno[2,3-b]pyridines and 2-amino-3,5-dicyano-6-sulfanyl pyridines. RSC Adv 4:50668–50677. doi:10.1039/C4RA04769A

    Article  CAS  Google Scholar 

  21. Elinson MN, Gorbunov SV, Vereshchagin AN, Nasybullin RF, Goloveshkin AS, Bushmarinov IS, Egorov MP (2014) Chemical and electrocatalytic cascade cyclization of sailcylaldehyde with three molecules of malononitrile: ‘one-pot’ simple and efficient way to the chromeno[2,3-b]pyridine scaffold. Tetrahedron 70:8559–8563. doi:10.1016/j.tet.2014.09.066

    Article  CAS  Google Scholar 

  22. Dömling A (2006) Recent develpoments in isocyanide based mnlticomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  23. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136. doi:10.1021/cr950027e

    Article  CAS  PubMed  Google Scholar 

  24. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi:10.1002/1521-3773(10000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

  25. Tietz LF, Kinzel T, Brazel CC (2009) The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Acc Chem Res 42:367–378. doi:10.1021/ar800170y

    Article  Google Scholar 

  26. Zhu J, Bienayme H (2005) Multicomponent reactions. Wiley, Weinheim

    Book  Google Scholar 

  27. Balme G, Bossharth E, Monteiro N (2003) Pd-assisted multicomponent synthesis of heterocycles. Eur J Org Chem. doi:10.1002/ejoc.200300378

    Google Scholar 

  28. Bertozzi F, Gustafsson M, Olsson R (2002) A novel metal iodide promoted three-component synthesis of substituted pyrrolidines. Org Lett 4:3147–3150. doi:10.1021/ol0264814

    Article  CAS  PubMed  Google Scholar 

  29. Nair V, Vinod AU, Rajesh C (2001) A novel synthesis of 2-aminopyrroles using a three-component reaction. J Org Chem 66:4427–4429. doi:10.1021/jo001714v

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Wu J (2011) Synthesis of H-pyrazolo[5,1-a]isoquinolines via copper (II)-catalyzed oxidation of an aliphatic C–H bond of tertiary amine in air. Org Lett 13:712–715. doi:10.1021/ol102939r

    Article  CAS  PubMed  Google Scholar 

  31. Wen LR, Shi YJ, Liu GY, Li M (2012) Modulating the reactivity of functionalized N,S-ketene acetal in MCR: selective synthesis of tetrahydropyridines and thiochromeno[2,3-b]pyridines via DABCO-catalyzed tandem annulation. J Org Chem 77:4252–4260. doi:10.1021/jo202665q

    Article  CAS  PubMed  Google Scholar 

  32. Saha A, Payra S, Banerjee S (2015) One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin using \(\text{ ZrO }_{2}\) nanoparticles as a reusable catalyst. Green Chem 17:2859–2866. doi:10.1039/C4GC02420F

    Article  CAS  Google Scholar 

  33. Poomathi N, Mayakrishnan S, Muralidharan D, Srinivasan R, Perumal PT (2015) Reaction of isatins with 6-amino uracils and isoxazoles: isatin ring-operning vs. annulations and regioselective synthesis of isoxazole fused quinolones scaffolds in water. Green Chem 17:3362–3372. doi:10.1039/C5GC00006H

    Article  CAS  Google Scholar 

  34. Vivekanand T, Vinoth P, Agieshkumar B, Sampath N, Sudalai A, Menéndez JC, Sridharan V (2015) Highly efficient regioselective synthesis of pyrroles via a tandem enamine formation-Michael addition-cyclization sequence under catalyst- and solvent-free conditions. Green Chem 17:3415–3423. doi:10.1039/C5GC00365B

    Article  CAS  Google Scholar 

  35. Bora PP, Bihani M, Bez G (2015) Beyond enzymatic promiscuity: asymmetric induction by L-proline on lipase catalyzed synthesis of polyfunctionalized 4H-pyrans. RSC Adv 5:50597–50603. doi:10.1039/C5RA08785F

    Article  CAS  Google Scholar 

  36. Kattuboina A, Kaur P, Nguyen T, Li G (2008) Chiral N-phosphonyl imine chemistry: asymmetric 1,2-additions of allylmagnesium bromides. Tetrahedron Lett 49:3722–3724. doi:10.1016/j.tetlet.2008.04.038

    Article  CAS  Google Scholar 

  37. An G, Seifert C, Li G (2015) N-Phosphonyl/phosphinyl imines and group-assisted purification (GAP) chemistry/technology. Org Biomol Chem 13:1600–1617. doi:10.1039/C4OB02254H

    Article  CAS  PubMed  Google Scholar 

  38. Kaur P, Shakya G, Sun H, Pan Y, Li G (2010) Chiral N-phosphonyl imine chemistry: an efficient asymmetric synthesis of chiral N-phosphonyl propargylamines. Org Biomol Chem 8:1091–1096. doi:10.1039/B929314F

    Article  CAS  PubMed  Google Scholar 

  39. Kattamuri PV, Ai T, Pindi S, Sun Y, Gu P, Shi M, Li G (2011) Asymmetric synthesis of \(\alpha \)-amino-1,3-dithianes via chiral N-phosphonyl imine-based umpolung reaction without using chromatography and recrystallization. J Org Chem 76:2792–2797. doi:10.1021/jo200070d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kattamuri PV, Xiong Y, Pan Y, Li G (2013) N,N-Diisopropyl-N-phosphonyl imines lead to efficient asymmetric synthesis of aziridine-2-carboxylic esters. Org Biomol Chem 11:3400–3408. doi:10.1039/C3OB40251G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaur P, Nguyen T, Li G (2009) Chiral N-phosphonylimine chemistry: Asymmetric synthesis of N-phosphonyl \(\beta \)-amino weinreb amides. Eur J Org Chem. doi:10.1002/ejoc.200801061

  42. Kaur P, Wever W, Pindi S, Milles R, Gu P, Shi M, Li G (2011) The GAP chemistry for chiral N-phosphonyl imine-based Strecker reaction. Green Chem 13:1288–1292. doi:10.1039/C1GC15029D

    Article  CAS  Google Scholar 

  43. Pindi S, Wu J, Li G (2013) Design, synthesis, and applications of chiral N-2-phenyl-2-propyl sulfinyl imines for group-assisted purification (GAP) asymmetric synthesis. J Org Chem 78:4006–4012. doi:10.1021/jo400354r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng C, Jiang B, Tu SJ, Li G (2011) [4+2+1] Domino cyclization in water for chemo- and regioselective synthesis if spiro-substituted benzo[b]furo[3,4-e][1,4]diazepine derivatives. Green Chem 13:2107–2215. doi:10.1039/C1GC15183E

    Article  CAS  Google Scholar 

  45. Alizadeh A, Rezvanian A, Zhu LG (2012) Synthesis of heterocyclic [3.3.3]propellanes via a sequential four-componentreaction. J Org Chem 77:4385–4390. doi:10.1021/jo300457m

  46. Ahadi S, Kamranifard T, Armaghan M, Khavasia HR, Bazgir A (2014) Dimino Knoevenagel condensation-Michael addition-cyclization for diastereoselective synthesis of dihydrofuropyrido[2.3-d] pyrimidines via pyridinium ylides in water. RSC Adv 4:7296–7300. doi:10.1039/C3RA45795H

    Article  CAS  Google Scholar 

  47. Akbarzadeh R, Amanpour T, Khavasi HR, Bazgir A (2014) Atom-economical isocyanide-based multicomponent synthesis of 2,5-dioxopyrrolidines, spirobenzothiazinechromanes and 1,5-benzothiazepines. Tetrahedron 70:169–175. doi:10.1016/j.tet.2013.12.011

    Article  CAS  Google Scholar 

  48. Chennapuram M, Emmadi NR, Bingi C, Nanubolu JB, Atmakur K (2014) Group-assisted purification (GAP) chemistry for dihydrofurans: water as a medium for catalyst free synthesis in a one pot four component reaction. Green Chem 16:3237–3246. doi:10.1039/C4GC00388H

    Article  CAS  Google Scholar 

  49. Liu J, Zhang HR, Lin XR, Yan SJ, Lin J (2014) Catalyst-free cascade reaction of heterocyclic ketene aminals with N-substituted maleimide to synthesis bicyclic pyrrolidinone derivatives. RSC Adv 4:27582–27590. doi:10.1039/C4RA03863K

    Article  CAS  Google Scholar 

  50. Wang H, Shi D (2013) Efficient synthesis of functionalized dihydro-1H-indol-4(5H)-ones via one-pot three-component reaction under catalyst-free conditions. ACS Comb Sci 15:261–266. doi:10.1021/co4000198

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Liu X, Feng X, Huang Z, Shi D (2013) GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions. Green Chem 15:3307–3311. doi:10.1039/C3GC41799A

    Article  CAS  Google Scholar 

  52. Zhang J, Feng X, Liu X, Huang Z, Shi D (2014) An efficient three-component synthesis of highly functionalized tetrahydroacenaphtho[1,2-b]indolone derivatives catalyzed by L-proline. Mol Divers 18:727–736. doi:10.1007/s11030-014-9544-4

    Article  CAS  PubMed  Google Scholar 

  53. Feng X, Wang J, Lin W, Zhang J, Huang Z, Shi D (2014) Catalyst-free reaction in water: synthesis of functionalized tetrahydroindole derivatives via three-component domino reaction. Chin J Chem 32:889–896. doi:10.1002/cjoc.201400312

    Article  CAS  Google Scholar 

  54. Wang J, Feng X, Xun Z, Shi D, Huang Z (2015) Multicomponent strategy to pyrazolo[3,4-e]indolizine derivatives under microwave irradiation. J Org Chem 80:8435–8442. doi:10.1021/acs.joc5b01314

  55. Feng X, Wang J, Xun Z, Zhang J, Huang Z, Shi D (2015) Highly selective synthesis of functionalized polyhydroisoquinoline derivatives via a three-component domino reaction. Chem Commun 51:1528–1531. doi:10.1039/C4CC08900f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions (15KJA150006), the financial support from the Natural Science Foundation of Jiangsu Province (BK20131160) and a Project Funded by the Priority Academic Project Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Qing Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 5679 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YX., Xun, Z., Zhang, JJ. et al. An efficient one-pot synthesis of functionalized chromeno[4,3-b]pyridine derivatives under catalyst-free conditions. Mol Divers 21, 293–304 (2017). https://doi.org/10.1007/s11030-016-9723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9723-6

Keywords

Navigation