Skip to main content
Log in

Iodine-mediated \({ sp}^{3}\) C–H functionalization of methyl ketones: a one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient transition-metal-free approach toward C–H bond activation by using molecular \(\hbox {I}_{2}\)-mediated \({ sp}^{3}\) C–H bond functionalization for the synthesis of indolizine derivatives via 1,3-dipolar cycloaddition reaction of nitrogen ylides with ynones is described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Scheme 3

Similar content being viewed by others

References

  1. Sadowski B, Klajn J, Gryko DT (2016) Recent advances in the synthesis of indolizines and their \(\uppi \)-expanded analogues. Org Biomol Chem 14:7804–7828. doi:10.1039/C6OB00985A

    Article  CAS  PubMed  Google Scholar 

  2. Singh GS, Mmatli EE (2011) Recent progress in synthesis and bioactivity studies of indolizines. Eur J Med Chem 46:5237–5257. doi:10.1016/j.ejmech.2011.08.042

    Article  CAS  PubMed  Google Scholar 

  3. Ghinet A, Abuhaie CM, Gautret P, Benoit R, Dubois J, Farce A, Belei D, Bîcu E (2015) Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. Eur J Med Chem 89:115–127. doi:10.1016/j.ejmech.2014.10.041

    Article  CAS  PubMed  Google Scholar 

  4. Gupta SP, Mathur AN, Nagappa AN, Kumar D, Kumaran SA (2003) Quantitative structure–activity relationship study on a novel class of calcium-entry blockers: 1-[(4-(aminoalkoxy)phenyl)sulphonyl] indolizine. Eur J Med Chem 38:867–873. doi:10.1016/j.ejmech.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  5. Danac R, Al Matarneh CM, Shova S, Daniloaia T, Balan M, Mangalagiu II (2015) New indolizines with phenanthroline skeleton: synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg Med Chem 23:2318–2327. doi:10.1016/j.bmc.2015.03.077

    Article  CAS  PubMed  Google Scholar 

  6. Huang W, Zuo T, Jin H, Liu Z, Yang Z, Yu X, Zhang L, Zhang L (2013) Design, synthesis and biological evaluation of indolizine derivatives as HIV-1 VIF–ElonginC interaction inhibitors. Mol Divers 17:221–243. doi:10.1007/s11030-013-9424-3

    Article  CAS  PubMed  Google Scholar 

  7. Huckaba AJ, Yella A, Brogdon P, Murphy JS, Nazeeruddin MK, Grätzel M, Delcamp JH (2016) A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chem Commun 52:8424–8427. doi:10.1039/C6CC02247B

    Article  CAS  Google Scholar 

  8. Surpateanu GG, Becuwe M, Lungu NC, Dron PI, Fourmentin S, Landy D, Surpateanu G (2007) Photochemical behaviour upon the inclusion for some volatile organic compounds in new fluorescent indolizine \(\upbeta \)-cyclodextrin sensors. J Photochem Photobiol A 185:312–320. doi:10.1016/j.jphotochem.2006.06.026

    Article  CAS  Google Scholar 

  9. Sonnenschein H, Henrich G, Resch-Genger V, Schulz B (2000) Fluorescence and UV/Vis spectroscopic behaviour of novel biindolizines. Dyes Pigm 46:23–27. doi:10.1016/S0143-7208(00)00032-2

    Article  CAS  Google Scholar 

  10. Wan J, Zheng CJ, Fung M-K, Liu XK, Lee CS, Zhang XH (2012) Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs. J Mater Chem 22:4502–4510. doi:10.1039/C2JM14904D

    Article  CAS  Google Scholar 

  11. Becuwe M, Landy D, Delattre F, Cazier F, Fourmentin S (2008) Fluorescent indolizine-\(\upbeta \)-cyclodextrin derivatives for the detection of volatile organic compounds. Sensors 8:3689–3705. doi:10.3390/s8063689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kapat A, Nyfeler E, Giuffredi GT, Renaud P (2009) Intramolecular Schmidt reaction involving primary azidoalcohols under nonacidic conditions: synthesis of indolizidine (\(-\))-167B. J Am Chem Soc 131:17746–17747. doi:10.1021/ja908933s

    Article  CAS  PubMed  Google Scholar 

  13. Kostik EI, Abiko A, Oku A (2001) Chichibabin indolizine synthesis revisited: synthesis of indolizinones by solvolysis of 4-alkoxycarbonyl-3-oxotetrahydroquinolizinium ylides. J Org Chem 66:2618–2623. doi:10.1021/jo0011639

    Article  CAS  PubMed  Google Scholar 

  14. Basavaiah D, Devendar B, Lenin DV, Satyanarayana T (2009) The Baylis–Hillman bromides as versatile synthons: a facile one-pot synthesis of indolizine and benzofused indolizine frameworks. Synlett 3:411–416. doi:10.1055/s-0028-1087533

    Article  Google Scholar 

  15. Kakehi A, Ito ST, Maeda M, Takeda R, Nishimura M, Tamashima M, Yamaguchi T (1978) Synthesis using allylidenedihydropyridines. 4. Novel synthetic methods for indolizine derivatives. J Org Chem 43:4837–4840. doi:10.1021/jo00419a026

    Article  CAS  Google Scholar 

  16. Rotaru AV, Druta ID, Oeser T, Müller TJJ (2005) A novel coupling 1,3-dipolar cycloaddition sequence as a three-component approach to highly fluorescent indolizines. Helv Chim Acta 88:1798–1812. doi:10.1002/hlca.200590141

    Article  Google Scholar 

  17. Fang J, Yan C-Y (2014) Synthesis of 6a,6b,13,13a-tetrahydro-6H-5-oxa-12a-azadibenzo[\(a, g\)]fluorene derivatives via cycloaddition reactions of isoquinolinium salts with 3-nitrochromenes. Mol Divers 18:91–99. doi:10.1007/s11030-013-9489-z

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhang Y, Shen YM, Hu HW, Xu JH (2010) Regioselective synthesis of 3-acylindolizines and benzo-analogues via 1,3-dipolar cycloadditions of \(N\)-ylides with maleic anhydride. Org Biomol Chem 8:2449–2456. doi:10.1039/C000277A

    Article  CAS  PubMed  Google Scholar 

  19. Gulías M, Mascareñas JL (2016) Metal-catalyzed annulations through activation and cleavage of C–H bonds. Angew Chem Int Ed 55:2–22. doi:10.1002/anie.201511567

    Article  Google Scholar 

  20. Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem Rev 111:1215–1292. doi:10.1021/cr100280d

    Article  CAS  PubMed  Google Scholar 

  21. Xu L-M, Li B-J, Yang Z, Shi Z-J (2010) Organopalladium(IV) chemistry. Chem Soc Rev 39:712–733. doi:10.1039/B809912J

    Article  CAS  PubMed  Google Scholar 

  22. Naidu PS, Majumder S, Bhuyan PJ (2015) Iodine-catalyzed \({ sp}^{3}\) C–H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides. Mol Divers 19:685–693. doi:10.1007/s11030-015-9605-3

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y-P, Liu M-C, Jia F-C, Yuan J-J, Gao Q-H, Lian M, Wu A-X (2012) Metal-free \({ sp}^{3}\) C–H bond dual-(het)arylation: \(\text{ I }_{2}\)-promoted domino process to construct 2,2-bisindolyl-1-arylethanones. Org Lett 14:3393–3395. doi:10.1021/ol301366p

    Google Scholar 

  24. Gao M, Yang Y, Wu Y-D, Deng C, Shu W-M, Zhang D-X, Cao L-P, She N-F, Wu A-X (2010) An efficient synthesis of hydantoins via sustainable integration of coupled domino processes. Org Lett 12:4026–4029. doi:10.1021/ol1015948

    Article  CAS  PubMed  Google Scholar 

  25. Campos KR (2007) Direct \({ sp}^{3}\) C–H bond activation adjacent to nitrogen in heterocycles. Chem Soc Rev 36:1069–1084. doi:10.1039/B607547A

    Article  CAS  PubMed  Google Scholar 

  26. Li C-J (2009) Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42:335–344. doi:10.1021/ar800164n

    Article  CAS  PubMed  Google Scholar 

  27. Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium(II)-Catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. doi:10.1002/anie.200806273

    Article  CAS  Google Scholar 

  28. Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O (2010) Functionalization of organic molecules by transition-metal-catalyzed \(\text{ C }({ sp}^{3})\)–H activation. Chem A Eur J 16:2654–2672. doi:10.1002/chem.200902374

    Article  CAS  Google Scholar 

  29. Schipper DJ, Campeau L-C, Fagnou K (2009) Catalyst and base controlled site-selective \({ sp}^{2}\) and \({ sp}^{3}\) direct arylation of azine \(N\)-oxides. Tetrahedron 65:3155–3164. doi:10.1016/j.tet.2008.12.004

    Article  CAS  Google Scholar 

  30. Mousseau JJ, Larivee A, Charette AB (2008) Palladium-catalyzed benzylic C–H insertion of 2-substituted \(N\)-iminopyridinium ylides. Org Lett 10:1641–1643. doi:10.1021/ol800396v

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Gupta G, Srivastava S (2011) Synthesis of new class of alkyl azarene pyridinium zwitterions via iodine mediated \({ sp}^{3}\) C–H bond activation. Org Lett 13:6366–6369. doi:10.1021/ol202654j

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Gupta LP, Kumar M (2013) Metal-free \(\text{ C }(\text{ sp }^{3})\)-H bond activation: first synthesis of diaryl-pyridinium-azaarene-butenolate zwitterionic salts on chalcones. RSC Adv 3:18771–18774. doi:10.1039/C3RA42761G

  33. Yavari I, Naeimabadi M, Halvagar MR (2016) \(\text{ FeCl }_{3}\)-catalyzed formation of indolizine derivatives via the 1,3-dipolar cycloaddition reaction between azomethine ylides and chalcones or dibenzylideneacetones. Tetrahedron Lett 57:3718–3721. doi:10.1016/j.tetlet.2016.07.004

    Article  CAS  Google Scholar 

  34. Yavari I, Naeimabadi M, Hosseinpour R, Halvagar MR (2016) A one-pot synthesis of highly functionalized indolizines by 1,3-dipolar cycloaddition of azomethine ylides and phosphorylated hydroxyketenimines. Synlett 27:2601–2605. doi:10.1055/s-0035-1562523

    Article  CAS  Google Scholar 

  35. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van der Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457. doi:10.1107/S002188980600731X

    Article  CAS  Google Scholar 

  36. Burnett MN, Johnson CK (1996) ORTEP-III Report ORNL-6895. Oak Ridge National Laboratory, Tennessee

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Yavari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 3304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, I., Sheykhahmadi, J., Naeimabadi, M. et al. Iodine-mediated \({ sp}^{3}\) C–H functionalization of methyl ketones: a one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones. Mol Divers 21, 1–8 (2017). https://doi.org/10.1007/s11030-016-9720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9720-9

Keywords

Navigation