Skip to main content
Log in

Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of pyrano-fused benzophenazines were synthesized using a bifunctional thiourea-based organocatalyst from the one-pot four-component reaction of 2-hydroxy-1,4-naphthoquinone, benzene-1,2-diamines, malononitrile or its derivatives and isatins or aromatic aldehydes in aqueous medium. Metal-free reaction condition, water as solvent, high bond forming efficiency (five new bonds formed in one step), good yields and easy purification process are the notable features of this methodology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308. doi:10.1038/nature07367

    Article  CAS  PubMed  Google Scholar 

  2. Dondoni A, Massi A (2008) Asymmetric organocatalysis: from infancy to adolescence organocatalysis. Angew Chem Int Ed 47:4638–4660. doi:10.1002/anie.200704684

    Article  CAS  Google Scholar 

  3. Yu XH, Wang W (2008) Hydrogen-bond-mediated asymmetric catalysis. Asian J Chem 3:516–532. doi:10.1002/asia.200700415

    Article  Google Scholar 

  4. Dalko PI, Moisan L (2004) In the golden age of organocatalysis. Angew Chem Int Ed 43:5138–5175. doi:10.1002/anie.200400650

    Article  CAS  Google Scholar 

  5. Bertelsen S, Jorgensen KA (2009) Organocatalysis-after the gold rush. Chem Soc Rev 38:2178–2189. doi:10.1039/b903816g

    Article  CAS  PubMed  Google Scholar 

  6. List B (2007) Introduction: Organocatalysis. Chem Rev 107:5413–5415. doi:10.1021/cr078412e

    Article  CAS  Google Scholar 

  7. Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289–296. doi:10.1039/B107298F

    Article  CAS  PubMed  Google Scholar 

  8. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713–5743. doi:10.1021/cr068373r

    Article  CAS  PubMed  Google Scholar 

  9. Sigman MS, Jacobsen EN (1998) Schiff base catalysts for the asymmetric strecker reaction identified and optimized from parallel synthetic libraries. J Am Chem Soc 120:4901–4902. doi:10.1021/ja980139y

    Article  CAS  Google Scholar 

  10. Schreiner PR, Wittkopp A (2002) H-bonding additives act like lewis acid catalysts. Org Lett 4:217–220. doi:10.1021/ol017117s

    Article  CAS  PubMed  Google Scholar 

  11. Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc 125:12672–12673. doi:10.1021/ja036972z

    Article  CAS  PubMed  Google Scholar 

  12. Takemoto Y (2005) Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org Biomol Chem 3:4299–4306. doi:10.1039/B511216H

    Article  CAS  PubMed  Google Scholar 

  13. Serdyuk OV, Heckel CM, Tsogoeva SB (2013) Bifunctional primary amine-thioureas in asymmetric organocatalysis. Org Biomol Chem 11:7051–7071. doi:10.1039/C3OB41403E

    Article  CAS  PubMed  Google Scholar 

  14. Fang X, Wang C-J (2015) Recent advances in asymmetric organocatalysis mediated by bifunctional amine-thioureas bearing multiple hydrogen-bonding donors. Chem Commun 51:1185–1197. doi:10.1039/C4CC07909D

    Article  CAS  Google Scholar 

  15. Bugaut X, Constantieux T, Coquerel Y, Rodriguez J (2014) In: Zhu J,Wang Q, Wang M-X (eds) Multicomponent reactions in organic synthesis. Chap 5. Wiley, Weinheim, pp 109–158

  16. Choudhury LH, Parvin T (2011) Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). Tetrahedron 67:8213–8228. doi:10.1016/j.tet.2011.07.020

    Article  CAS  Google Scholar 

  17. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359. doi:10.1021/cr400615v

    Article  CAS  PubMed  Google Scholar 

  18. Nair V, Rajesh V, Vinod A, Bindu US, Streekenth AR, Mathen JS, Balagopal L (2003) Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res 36:899–907. doi:10.1021/ar020258p

    Article  CAS  PubMed  Google Scholar 

  19. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  20. Das D, Banerjee R, Mitra A (2014) Bioactive and pharmacologically important pyrano[2,3-c]pyrazoles. J Chem Pharmaceut Res 6:108–116

    Google Scholar 

  21. Malladi S, Isloora AM, Peethambar SK, Ganesh BM (2012) Palusa, Goud SK. Der Pharma Chem 4:43–52

    CAS  Google Scholar 

  22. Laursen JB, Nielsen J (2004) Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. J Chem Rev 104:1663–1686. doi:10.1021/cr020473

    Article  CAS  Google Scholar 

  23. Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar ABA (2008) A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-\(9^\prime \),2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Med Chem Lett 18:4538–4543. doi:10.1016/j.bmcl.2008.07.042

    Article  CAS  PubMed  Google Scholar 

  24. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445. doi:10.1146/annurev.phyto.44.013106.145710

    Article  CAS  PubMed  Google Scholar 

  25. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45:740–743. doi:10.1021/jm010330

    Article  CAS  PubMed  Google Scholar 

  26. Tangmouo JG, Meli AL, Komguem J, Kuete V, Ngounou FN, Lontsi D, Beng VP, Choudhary MI, Sondengam BL (2006) Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien). Tetrahedron Lett 47:3067–3070. doi:10.1016/j.tetlet.2006.03.006

    Article  CAS  Google Scholar 

  27. Kraus GA, Kim IA (2003) A direct synthesis of \(o\)-methyl claussequinone. J Org Chem 68:4517–4518. doi:10.1021/jo030026j

    Article  CAS  PubMed  Google Scholar 

  28. Vicker N, Burgess L, Chuckowree IS, Dodd R, Folkes AJ, Hardick DJ, Hancox TC, Dangerfield W, Liddle C, Mistry P, Stewart AJ, Denny WA (2002) Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J Med Chem 45:721–739. doi:10.1021/jm010329a

    Article  CAS  PubMed  Google Scholar 

  29. Shahia M, Foroughifar N, Mobinikhaledi A (2015) Synthesis and antimicrobial activity of some tetrahydro quinolonediones and pyrano[2,3-d]pyrimidine derivatives. Iran J Pharm Res 14:757–763

    Google Scholar 

  30. Dar AM, uzzaman Shams (2015) Pathways for the synthesis of pyrimidine and pyran based hetrocyclic derivatives: a concise review. Eur Chem Bull 4:249–259. doi:10.17628/ECB.2015.4.249

    CAS  Google Scholar 

  31. de Andrade-Neto VF, Goulart MOF, da Silva Filho JF, da Silva MJ, do Pinto M CFR, Pinto AV, Zalis MG, Carvalho LH, Krettli AU (2004) Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 14:1145–1149. doi:10.1016/j.bmcl.2003.12.069

    Article  PubMed  Google Scholar 

  32. Feron O, Riant O, Kiss R, Leclercq J, Chataigne G, Vandelaer N, Lamy C (2013) Novel phenazine derivatives and their use. US Patent 20130289030 A1, 31 Oct 2013

  33. Jardim GAM, Cruz EHG, Valença WO, Resende JM, Rodrigues BL, Ramos DF, Oliveira RN, Silva PEA, da Silva Júnior EN (2015) On the search for potential antimycobacterial drugs: synthesis of naphthoquinoidal, phenazinic and 1,2,3-triazolic compounds and evaluation against mycobacterium tuberculosis. J Braz Chem Soc 26:1013–1027. doi:10.5935/0103-5053.20150067

    CAS  Google Scholar 

  34. Hasaninejad A, Firoozi S (2013) One-pot, sequential four-component synthesis of benzo[c]pyrano[3,2-a]phena-zine, bis-benzo[c]pyrano[3,2-a]phenazine and oxospiro benzo[c]pyrano[3,2-a]phenazine derivatives using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient and reusable solid base catalyst. Mol Divers 17:499–513. doi:10.1007/s11030-013-9446-x

    Article  CAS  PubMed  Google Scholar 

  35. Wang SL, Wu F-Y, Cheng C, Zhang G, Liu Y-P, Jiang B, Shi F, Ju S-J (2011) Multicomponent synthesis of poly-substituted benzo[\(a\)]pyrano[2,3-\(c\)]phenazine derivatives under microwave heating. ACS Comb Sci 13:135–139. doi:10.1021/co1000376

    Article  CAS  PubMed  Google Scholar 

  36. Mahdavinia GH, Mirzazadeh M, Notash B (2013) A rapid and simple diversity-oriented synthesis of novel 3-amino-\(2^\prime \)-oxospiro [benzo[\(c\)]pyrano[3,2-\(a\)]phenazine-1,\(3^\prime \)-indoline]-2-carbonitrile/carboxylate derivatives via a one-pot, four-component domino reaction. Tetrahedron Lett 54:3487–3492. doi:10.1016/j.tetlet.2013.04.082

    Article  CAS  Google Scholar 

  37. Hasaninejad A, Firoozi S, Mandegani F (2013) An efficient synthesis of novel spiro[benzo[\(c\)]pyrano[3,2-\(a\)]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett 54:2791–2794. doi:10.1016/j.tetlet.2013.03.073

  38. Elah Abadi AY, Maghsoodlou M-T, Heydari R, Mohebat R (2015) PTSA-catalyzed four-component domino reactions for the one-pot synthesis of functionalized 11H-benzo[a]benzo[6,7]chromeno[2,3-c]phenazine-11,16(17H)-diones in PEG. Res Chem Intermed. doi:10.1007/s11164-015-2083-5

  39. Bharti R, Parvin T (2015) Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone /hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Adv 5:66833–66839. doi:10.1039/c5ra13093j

    Article  CAS  Google Scholar 

  40. Bharti R, Parvin T (2015) Molecular Diversity from the L-proline catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1,3-dimethyl-6-aminouracil. Synth Commun 45:1442–1450. doi:10.1002/chin.201537164

    Article  CAS  Google Scholar 

  41. Bharti R, Parvin T (2015) One-pot synthesis of highly functionalized tetrahydropyridines: a camphoresulfonic acid catalyzed multicomponent reaction. J Heterocycl Chem 52:1806–1811. doi:10.1002/jhet.2268

    Article  CAS  Google Scholar 

  42. Karamthulla S, Pal S, Parvin T, Choudhury LH (2014) L-proline catalyzed multicomponent reactions: facile access to 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione derivatives. RSC Adv 4:15319–15324. doi:10.1039/c4ra00876f

    Article  CAS  Google Scholar 

  43. Pal S, Parvin T, Choudhury LH (2012) \(\text{ VCl }_{3}\) catalyzed imine-based multicomponent reactions for the facile access of functionalized tetrahydropyridines and \(\upbeta \)-amino carbonyls. Mol Divers 16:129–143. doi:10.1007/s11030-011-9339-9

    Article  CAS  PubMed  Google Scholar 

  44. Khan AT, Parvin T, Choudhury LH (2008) Effects of substituent in \(\beta \)-position of 1, 3-dicarbonyl compounds in bromodimethylsulfonium bromide catalyzed multicomponent reactions: a facile access to functionalized piperidines. J Org Chem 73:8398–8402. doi:10.1021/jo8014962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to NIT Patna and the Department of Science and Technology, India for the financial support with Sanction No. SR/FT/CS-008/2010. The authors are grateful to IIT Patna and SAIF-Panjab University for providing the analytical facilities for characterization of products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Parvin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 8784 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, R., Parvin, T. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Mol Divers 20, 867–876 (2016). https://doi.org/10.1007/s11030-016-9681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9681-z

Keywords

Navigation