Skip to main content

Advertisement

Log in

Screening of potential targets in Plasmodium falciparum using stage-specific metabolic network analysis

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The Apicomplexa parasite Plasmodium is a major cause of death in developing countries which are less equipped to bring new medicines to the market. Currently available drugs used for treatment of malaria are limited either by inadequate efficacy, toxicity and/or increased resistance. Availability of the genome sequence, microarray data and metabolic profile of Plasmodium parasite offers an opportunity for the identification of stage-specific genes important to the organism’s lifecycle. In this study, microarray data were analysed for differential expression and overlapped onto metabolic pathways to identify differentially regulated pathways essential for transition to successive erythrocytic stages. The results obtained indicate that S-adenosylmethionine decarboxylase/ornithine decarboxylase, a bifunctional enzyme required for polyamine synthesis, is important for the Plasmodium cell growth in the absence of exogenous polyamines. S-adenosylmethionine decarboxylase/ornithine decarboxylase is a valuable target for designing therapeutically useful inhibitors. One such inhibitor, \(\upalpha \)-difluoromethyl ornithine, is currently in use for the treatment of African sleeping sickness caused by Trypanosoma brucei. Structural studies of ornithine decarboxylase along with known inhibitors and their analogues were carried out to screen drug databases for more effective and less toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO (2013) World malaria report 2013. 1–178

  2. Kumar A, Valecha N, Jain T, Dash AP (2007) Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg 77:69–78

    PubMed  Google Scholar 

  3. Tyagi V, Sharma AK, Yadav R, Agrawal OP, Devanathan Sukumaran D, Veer V (2013) Characteristics of the larval breeding sites of Anopheles culicifacies sibling species in Madhya Pradesh, India. Int J Malar Res Rev 1:47–53

    Google Scholar 

  4. Autino B, Corbett Y, Castelli F, Taramelli D (2012) Pathogenesis of malaria in tissues and blood. Mediterr J Hematol Infect Dis 4:e2012061. doi:10.4084/MJHID.2012.061

  5. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508. doi:10.1126/science.1087025

    Article  PubMed  Google Scholar 

  6. Foth BJ, Zhang N, Chaal BK, Sze SK, Preiser PR, Bozdech Z (2011) Quantitative time-courseprofiling of parasite and host cell proteins in the human malaria parasite Plasmodiumfalciparum. Mol Cell Proteomics. doi:10.1074/mcp.M110.006411

  7. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. doi:10.1038/nbt.1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924. doi:10.1101/gr.2050304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fatumo S, Plaimas K, Mallm J-P, Schramm G, Adebiyi E, Oswald M, Eils R, König R (2009) Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol 9:351–358. doi:10.1016/j.meegid.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Huthmacher C, Hoppe A, Bulik S, Holzhütter H-G (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol 4:1–27. doi:10.1186/1752-0509-4-120

    Article  Google Scholar 

  11. Mwakalinga SB, Wang CW, Bengtsson DC, Turner L, Dinko B, Lusingu JP, Arnot DE, Sutherland CJ, Theander TG, Lavstsen T (2012) Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes. Malar J 11:1–12. doi:10.1186/1475-2875-11-429

    Article  Google Scholar 

  12. Spitzmüller A, Mestres J (2013) Prediction of the P. falciparum target space relevant to malaria drug discovery. PLoS Comput Biol. doi:10.1371/journal.pcbi.1003257

  13. Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32. doi:10.1002/ddr.20345

    PubMed Central  CAS  PubMed  Google Scholar 

  14. http://www.ncbi.nlm.nih.gov/geo/

  15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. doi:10.1093/nar/gkv007

  16. http://www.clcbio.com/products/clc-drug-discovery-workbench/

  17. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2009) Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79. doi:10.1093/bib/bbp043

    Article  PubMed Central  PubMed  Google Scholar 

  18. Plata G, Hsiao T-L, Olszewski KL, Llinás M, Vitkup D (2010) Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 6:1–15. doi:10.1038/msb.2010.60

    Article  Google Scholar 

  19. Caspi R, Foerster H, Fulcher CA, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2008) The metaCyc database of metabolic12 pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. doi:10.1093/nar/gkm900

  20. Ginsburg H, Tilley L (2011) Plasmodium falciparum metabolic pathways (MPMP) project upgraded with a database of subcellular locations of gene products. Trends Parasitol 27:285–286. doi:10.1016/j.pt.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2009) Plasmodium falciparum metabolic pathways (MPMP) projectupgraded with a database of subcellular locations of gene products. Trends Parasitol 27:285–286. doi:10.1016/j.pt.2011.03.001

    Google Scholar 

  22. Bahl A (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31:212–215. doi:10.1093/nar/gkg081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:223–228. doi:10.1093/nar/gkn187

    Article  Google Scholar 

  24. Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database.Nucleic Acids Res . doi:10.1093/nar/gks378

  25. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Thorsten M, Ohl P, Christoph S, Thiel K, Wiswedel B (2007) KNIME: the konstanz information miner. Stud. Classif. Data Anal. Knowl. Organ. (GfKL 2007)

  26. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105. doi:10.1021/ci300367a

    Article  CAS  PubMed  Google Scholar 

  27. Krzywinski M, Altman N (2014) Visualizing samples with box plots. Nat Methods 11:119–120. doi:10.1038/nmeth.2813

    Article  CAS  PubMed  Google Scholar 

  28. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang P, Wang Q, Yang Y, Coward JK, Nzila A, Sims PFG, Hyde JE (2010) Characterisation of the bifunctional dihydrofolate synthase-folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition. Mol Biochem Parasitol 172:41–51. doi:10.1016/j.molbiopara.2010.03.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dong CK, Patel V, Yang JC, Dvorin JD, Duraisingh MT, Clardy J, Wirth DF (2009) Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors. Bioorg Med Chem Lett 19:972–975. doi:10.1016/j.bmcl.2008.11.071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Van Brummelen AC, Olszewski KL, Wilinski D, Llinás M, Louw AI, Birkholtz L-M (2009) Co-inhibition of Plasmodium falciparum \(S\)-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem 284:4635–4646. doi:10.1074/jbc.M807085200

    Article  PubMed Central  PubMed  Google Scholar 

  32. Birkholtz L, Joubert F, Neitz AWH, Louw AI (2003) Comparative properties of a three-dimensional model of Plasmodium falciparum ornithine decarboxylase. Proteins 50:464–473. doi:10.1002/prot.10274

  33. Bitonti AJ, McCann PP, Sjoerdsma A (1987) Plasmodium falciparum and Plasmodium berghei: effects of ornithine decarboxylase inhibitors on erythrocytic schizogony. Exp Parasitol 64:237–243. doi:10.1016/0014-4894(87)90148-2

    Article  CAS  PubMed  Google Scholar 

  34. Hollingdale MR, McCann PP, Sjoerdsma A (1985) Plasmodium berghei: Inhibitors of ornithine decarboxylase block exoerythrocytic schizogony. Exp Parasitol 60:111–117. doi:10.1016/S0014-4894(85)80028-X

    Article  CAS  PubMed  Google Scholar 

  35. Le Roux D, Burger PB, Niemand J, Grobler A, Urbán P, Fernàndez-Busquets X, Barker RH, Serrano AE, Louw A, Birkholtz L-M (2014) Novel \(S\)-adenosyl-l-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites. Int J Parasitol Drugs drug Resist 4:28–36. doi:10.1016/j.ijpddr.2013.11.003

    Article  PubMed Central  PubMed  Google Scholar 

  36. Duef VT, Ingner D, Heby O, Khomutov AR, Persson L, Al-Karadaghi S (2007) Astructural insight into the inhibition of human and Leishmania donovani ornithine decarboxylase by 1-amino-oxy-3-aminopropane. Biochem J 405:261–268. doi:10.1042/BJ20070188

    Article  Google Scholar 

  37. Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194. doi:10.1038/35056508

    Article  CAS  PubMed  Google Scholar 

  38. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi:10.1021/ci3001277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633. doi:10.1093/nar/gkp456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Das Gupta R, Krause-Ihle T, Bergmann B, Müller IB, Khomutov AR, Müller S, Walter RD, Lüersen K (2005) 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemother 49:2857–2864. doi:10.1128/AAC.49.7.2857-2864.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Vannier-Santos MA, Menezes D, Oliveira MF, de Mello FG (2008) The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology 154:3104–3111. doi:10.1099/mic.0.2007/013896-0

    Article  CAS  PubMed  Google Scholar 

  42. Gold LS, Manley NB, Slone TH, Rohrbach L, Garfinkel GB (2005) Supplement to the carcinogenic potency database (CPDB): results of animal bioassays published in the general literature through 1997 and by the National Toxicology Program in 1997–1998. Toxicol Sci 85:747–808. doi:10.1093/toxsci/kfi161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinakin Dhandhukia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dholakia, N., Dhandhukia, P. & Roy, N. Screening of potential targets in Plasmodium falciparum using stage-specific metabolic network analysis. Mol Divers 19, 991–1002 (2015). https://doi.org/10.1007/s11030-015-9632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9632-0

Keywords

Navigation