Skip to main content

Advertisement

Log in

Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The Groebke–Blackburn–Bienaymé reaction (GBBR) is used for the one-pot synthesis of therapeutically relevant fused imidazoles bridgehead nitrogen heterocyclic compounds from readily available aldehyde, isocyanide and amidine building blocks. The reaction is driven by a wide range of catalysts and can be performed either under solvent or solvent-free conditions, or under microwave irradiation as heat source. The GBBR products can be used for the synthesis of a variety of more complex scaffolds via postmodification reactions. These include cyclization and nucleophilic substitution as well as further MCRs. The GBBR reaction has seen diverse applications in combinatorial and medicinal chemistry and its products are of great use in drug discovery. In this review, we summarize the efforts of the chemistry community in the progress and applications of GBBR since 1998. This review also includes some biological profiles and synthetic scopes of GBBR products. The component variations, postmodifications and secondary transformations will also be discussed throughout this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Scheme 3
Scheme 4
Fig. 8
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 9
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 10
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Fig. 11
Scheme 22
Scheme 23
Fig. 12
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Fig. 13
Fig. 14
Scheme 28
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Moni L, Banfi L, Basso A, Brambilla A, Riva R (2014) Diversity-oriented synthesis of dihydrobenzoxazepinones by coupling the Ugi multicomponent reaction with a Mitsunobu cyclization. Beilstein J Org Chem 10:209–212. doi:10.3762/bjoc.10.16

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dandapani S, Germain AR, Jewett I, le Quement S, Marie JC, Muncipinto G, Duvall JR, Carmody LC, Perez JR, Engel JC, Gut J, Kellar D, Siqueira-Neto JL, McKerrow JH, Kaiser M, Rodriguez A, Palmer MA, Foley M, Schreiber SL, Munoz B (2013) Diversity-oriented synthesis yields a new drug lead for treatment of chagas disease. ACS Med Chem Lett 5:149–153. doi:10.1021/ml400403u

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benito JM, Ortega-Caballero F (2013) Recent developments on synthetic tools towards structural and functional glycodiversity. Curr Med Chem 20:3986–4029. doi:10.2174/09298673113209990209

    Article  CAS  PubMed  Google Scholar 

  4. Dandapani S, Comer E, Duvall JR, Munoz B (2012) Hits, leads and drugs against malaria through diversity-oriented synthesis. Future Med Chem 4:2279–2294. doi:10.4155/fmc.12.178

    Article  CAS  PubMed  Google Scholar 

  5. Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14:371–382. doi:10.1016/j.cbpa.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  6. Leon F, Rivera DG, Wessjohann LA (2008) Multiple multicomponent macrocyclizations including bifunctional building blocks (MiBs) based on Staudinger and Passerini three-component reactions. J Org Chem 73:1762–1767. doi:10.1021/jo7022125

    Article  CAS  PubMed  Google Scholar 

  7. Domling A (1998) Isocyanide based multi component reactions in combinatorial chemistry. Comb Chem High T Scr 1:1–22

    CAS  Google Scholar 

  8. Domling A (2000) The discovery of new isocyanide-based multi-component reactions. Curr Opin Chem Biol 4:318–323. doi:10.1016/S1367-5931(00)00095-8

    Article  CAS  PubMed  Google Scholar 

  9. Banfi L, Riva R (2005) The passerini reaction. Org React 65:1–140. doi:10.1002/0471264180.or065.01

    CAS  Google Scholar 

  10. Ugi I, Lohberger S, Karl R (1991) The passerini and ugir reactions. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Pergamon, Oxford, pp 1083–1109

    Chapter  Google Scholar 

  11. Ugi I, Meyr R (1958) Neue darstellungsmethode für isonitrile. Angew Chem Int Edit 70:702–703. doi:10.1002/ange.19580702213

    Article  CAS  Google Scholar 

  12. Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18:115–122. doi:10.1016/S0160-9327(05)80086-9

    Article  CAS  Google Scholar 

  13. Zarganes-Tzitzikas T, Patil P, Khoury K, Herdtweck E, Dömling A (2015) Concise synthesis of Tetrazole-Ketopiperazines by two consecutive ugi reactions. Eur J Org Chem 2015:51–55. doi:10.1002/ejoc.201403401

    Article  CAS  Google Scholar 

  14. Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39:3635–3638. doi:10.1016/S0040-4039(98)00653-4

    Article  CAS  Google Scholar 

  15. Bienaymé H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37:2234–2237. doi:10.1002/(SICI)1521-3773(19980904)37:16

    Article  Google Scholar 

  16. Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 6:661–663. doi:10.1055/s-1998-1721

    Article  Google Scholar 

  17. Devi N, Rawal RK, Singh V (2015) Diversity-oriented synthesis of fused-imidazole derivatives via Groebke–Blackburn–Bienayme reaction: a review. Tetrahedron 71:183–232. doi:10.1016/j.tet.2014.10.032

    Article  CAS  Google Scholar 

  18. Shaabana S, Negm A, Ibrahim EE, Elrazak AA (2014) Hepatocellular carcinoma chemotherapeutic agents: efficacy and mode of action. Onc Rev 8:25–35. doi:10.4081/oncol.2014.246

    Google Scholar 

  19. Shaaban S, Sasse F, Burkholz T, Jacob C (2014) Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation. Bioorg Med Chem 22:3610–3619. doi:10.1016/j.bmc.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  20. Shaaban S, Arafat MA, Hamama WS (2014) Vistas in the domain of organo selenocyanates. Arkivoc i, pp 470–505, doi:10.3998/ark.5550190.p008.763

  21. Shaaban S, Arafat MA, Gaffer HE, Hamama WS (2014) Synthesis and anti-tumor evaluation of novel organoselenocyanates and symmetrical diselenides dyestuffs. Der Pharma Chemica 6:186– 193

    Google Scholar 

  22. Abdel-Wahab BF, Shaaban S (2014) Thiazolothiadiazoles and thiazolooxadiazoles: synthesis and biological applications. Synthesis 46:1709–1716. doi:10.1055/s-0033-1338627

    Article  Google Scholar 

  23. Shaaban S, Diestel R, Hinkelmann B, Muthukumar Y, Verma RP, Sasse F, Jacob C (2012) Novel peptidomimetic compounds containing redox active chalcogens and quinones as potential anticancer agents. Eur J Med Chem 58:192–205. doi:10.1016/j.ejmech.2012.09.033

    Article  CAS  PubMed  Google Scholar 

  24. Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324–331. doi:10.1016/j.cbpa.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  26. Ulaczyk-Lesanko A, Hall DG (2005) Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol 9:266–276. doi:10.1016/j.cbpa.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  27. Pirrung MC, Das Sarma K (2004) Multicomponent reactions are accelerated in water. J Am Chem Soc 126:444–445. doi:10.1021/ja038583a

    Article  CAS  PubMed  Google Scholar 

  28. Domling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6:306–313. doi:10.1016/S1367-5931(02)00328-9

    Article  CAS  PubMed  Google Scholar 

  29. Ugi I, Heck S (2001) The multicomponent reactions and their libraries for natural and preparative chemistry. Comb Chem High T Scr 4:1–34. doi:10.2174/1386207013331291

    CAS  Google Scholar 

  30. Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi:10.1002/1521-3773(20000915)39:18

    Article  CAS  Google Scholar 

  31. Mecklenburg S, Shaaban S, Ba LA, Burkholz T, Schneider T, Diesel B, Kiemer AK, Röseler A, Becker K, Reichrath J, Stark A, Tilgen W, Abbas M, Wessjohann LA, Sasse F, Jacob C (2009) Exploring synthetic avenues for the effective synthesis of selenium- and tellurium-containing multifunctional redox agents. Org Biomol Chem 7:4753–4762. doi:10.1039/B907831B

    Article  CAS  PubMed  Google Scholar 

  32. Shaaban S, Ba LA, Abbas M, Burkholz T, Denkert A, Gohr A, Wessjohann LA, Sasse F, Weber W, Jacob C (2009) Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells. Chem Commun 31:4702–4704. doi:10.1039/b823149d

    Article  Google Scholar 

  33. Ramozzi R, Cheron N, El Kaim L, Grimaud L, Fleurat-Lessard P (2014) Predicting new Ugi-Smiles couplings: a combined experimental and theoretical study. Chemistry 20:9094–9099. doi:10.1002/chem.201400336

    CAS  PubMed  Google Scholar 

  34. Cheron N, Ramozzi R, El Kaim L, Grimaud L, Fleurat-Lessard P (2013) Substituent effects in Ugi-smiles reactions. J Phys Chem A 117:8035–8042. doi:10.1021/jp4052227

    Article  CAS  PubMed  Google Scholar 

  35. Cheron N, Ramozzi R, El Kaim L, Grimaud L, Fleurat-Lessard P (2012) Challenging 50 years of established views on Ugi reaction: a theoretical approach. J Org Chem 77:1361–1366. doi:10.1021/jo2021554

    Article  CAS  PubMed  Google Scholar 

  36. El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65:2153–2171. doi:10.1016/j.tet.2008.12.002

    Article  Google Scholar 

  37. Hulme C, Lee YS (2008) Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol Divers 12:1–15. doi:10.1007/s11030-008-9072-1

    Article  CAS  PubMed  Google Scholar 

  38. Parenty AD, Song YF, Richmond CJ, Cronin L (2007) A general and efficient five-step one-pot procedure leading to nitrogen-bridgehead heterocycles containing an imidazole ring. Org Lett 9:2253–2256. doi:10.1021/ol070263z

    Article  CAS  PubMed  Google Scholar 

  39. Tian Y, Du D, Rai D, Wang L, Liu H, Zhan P, De Clercq E, Pannecouque C, Liu X (2014) Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem 22:2052–2059. doi:10.1016/j.bmc.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  40. Song Y, Zhan P, Zhang Q, Liu X (2013) Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr Pharm Des 19:1528–1548. doi:10.2174/1381612811319080020

    CAS  PubMed  Google Scholar 

  41. Della EW, Knill AM (1996) Synthesis of nitrogen Bridgehead bicyclic heterocycles via ring-closure of beta-ammonio 5-hexenyl radicals. J Org Chem 61:7529–7533. doi:10.1021/jo960886i

    Article  CAS  PubMed  Google Scholar 

  42. Meng T, Zhang Z, Hu D, Lin L, Ding J, Wang X, Shen J (2007) Three-component combinatorial synthesis of a substituted 6H-pyrido[2’,1’:2,3]imidazo- [4,5-c]isoquinolin-5(6H)-one library with cytotoxic activity. J Comb Chem 9:739–741. doi:10.1021/cc0700593

    Article  CAS  PubMed  Google Scholar 

  43. Shahrisa A, Safa KD, Esmati S (2014) Synthesis, spectroscopic and DFT studies of novel fluorescent dyes: 3-Aminoimidazo[1,2-a]pyridines possessing 4-pyrone moieties. Spectrochim Acta A 117:614–621. doi:10.1016/j.saa.2013.09.056

    Article  CAS  Google Scholar 

  44. Lyon MA, Kercher TS (2004) Glyoxylic acid and MP-glyoxylate: efficient formaldehyde equivalents in the 3-CC of 2-aminoazines, aldehydes, and isonitriles. Org Lett 6:4989–4992. doi:10.1021/ol0478234

    Article  CAS  PubMed  Google Scholar 

  45. Sharma A, Li H (2011) A regioselective and high-yielding method for formaldehyde inclusion in the 3CC Groebke–Blackburn–Bienaymé reaction: one-step access to 3-aminoimidazoazines. Synlett 10:1407–1412. doi:10.1055/s-0030-1260568

    Google Scholar 

  46. Sun C, Ji S, Liu Y (2008) A novel, simple and efficient synthesis of 3-Amino-benzo[d]imidazo[2,1-b]thiazole derivatives via a multicomponent procedure. J Chin Chem Soc 55:292–296. doi:10.1002/jccs.200800043

    Article  CAS  Google Scholar 

  47. Lamberth C (2011) First synthesis of 3-Amino-2-arylimidazo[1,2-b]pyridazines by Groebke–Blackburn reaction. Synlett 12:1740–1744. doi:10.1055/s-0030-1260940

    Article  Google Scholar 

  48. Guchhait SK, Madaan C (2011) Groebke–Blackburn–Bienaymé multicomponent reaction in scaffold-modification of adenine, guanine, and cytosine: synthesis of aminoimidazole-condensed nucleobases. Tetrahedron Lett 52:56–58. doi:10.1016/j.tetlet.2010.10.143

    Article  CAS  Google Scholar 

  49. Khan AT, Sidick Basha R, Lal M (2012) Bromodimethylsulfonium bromide (BDMS) catalyzed synthesis of imidazo[1,2-a]pyridine derivatives and their fluorescence properties. Tetrahedron Lett 53:2211–2217. doi:10.1016/j.tetlet.2012.02.078

    Article  CAS  Google Scholar 

  50. Parchinsky VZ, Shuvalova O, Ushakova O, Kravchenko DV, Krasavin M (2006) Multi-component reactions between 2-aminopyrimidine, aldehydes and isonitriles: the use of a nonpolar solvent suppresses formation of multiple products. Tetrahedron Lett 47:947–951. doi:10.1016/j.tetlet.2005.11.152

    Article  CAS  Google Scholar 

  51. Shukla NM, Salunke DB, Yoo E, Mutz CA, Balakrishna R, David SA (2012) Antibacterial activities of Groebke–Blackburn–Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg Med Chem 20:5850–5863. doi:10.1016/j.bmc.2012.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guchhait SK, Madaan C (2009) An efficient, regioselective, versatile synthesis of N-Fused 2- and 3-Aminoimidazoles via Ugi-Type multicomponent reaction mediated by Zirconium(IV) Chloride in polyethylene Glycol-400. Synlett 4:628–632. doi:10.1055/s-0028-1087915

    Article  Google Scholar 

  53. Adib M, Mahdavi M, Noghani MA, Mirzaei P (2007) Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett 48:7263–7265. doi:10.1016/j.tetlet.2007.08.049

    Article  CAS  Google Scholar 

  54. Che C, Xiang J, Wang G, Fathi R, Quan J, Yang Z (2007) One-pot synthesis of quinoline-based Tetracycles by a Tandem three-component reaction. ACS Comb Sci 9:982–989. doi:10.1021/cc070058a

    CAS  Google Scholar 

  55. Shaabani A, Soleimani E, Maleki A (2007) One-pot three-component synthesis of 3-Aminoimidazo[1,2-\(a\)]pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh Chem 138:73–76

    Article  CAS  Google Scholar 

  56. Shaabani A, Rezazadeh F, Soleimani E (2008) Ammonium chloride catalyzed one-pot synthesis of imidazo[1,2-\(a\)]pyridines. Monatsh Chem 139:931–933

    Article  CAS  Google Scholar 

  57. Varma RS, Kumar D (1999) Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett 40:7665–7669. doi:10.1016/S0040-4039(99)01585-3

    Article  CAS  Google Scholar 

  58. Mironov MA, Tokareva MI, Ivantsova MN, Mokrushin VS (2006) New catalytic system for the synthesis of imidazo[1,2-\(a\)]pyridines by the Ugi reaction. Russ Chem Bull 55:1835–1839. doi:10.1007/s11172-006-0494-6

    Article  CAS  Google Scholar 

  59. Dimauro EF, Kennedy JM (2007) Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J Org Chem 72:1013–1016. doi:10.1021/jo0622072

    Article  CAS  PubMed  Google Scholar 

  60. Umkehrer M, Ross G, Jäger N, Burdack C, Kolb J, Hu H, Alvim-Gaston M, Hulme C (2007) Expeditious synthesis of imidazo[1,2-c]pyrimidines via a [4+1]-cycloaddition. Tetrahedron Lett 48:2213–2216. doi:10.1016/j.tetlet.2007.01.061

    Article  CAS  Google Scholar 

  61. Rousseau AL, Matlaba P, Parkinson CJ (2007) Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett 48:4079–4082. doi:10.1016/j.tetlet.2007.04.008

    Article  CAS  Google Scholar 

  62. Rostamnia S, Hassankhani A (2013) \(\text{ RuCl }_{3}\)-catalyzed solvent-free Ugi-type Groebke–Blackburn synthesis ofaminoimidazole heterocycles. Roy Soc Chem Adv 40:18626–18629. doi:10.1039/C3RA42752H

    Google Scholar 

  63. Shaabani A, Soleimani E, Sarvary A, Rezayan AH, Maleki A (2009) Tin(II) Chloride dihydrate catalyzed groebke condensation: an efficient protocol for the synthesis of 3-Aminoimidazo[1,2-a]pyridines. Chinese J Chem 27:369–371. doi:10.1002/cjoc.200990060

    Article  CAS  Google Scholar 

  64. Krasavin M, Tsirulnikov S, Nikulnikov M, Kysil V, Ivachtchenko A (2008) Poorly reactive 5-piperazin-1-yl-1,3,4-thiadiazol-2-amines rendered as valid substrates for Groebke–Blackburn type multi-component reaction with aldehydes and isocyanides using TMSCl as a promoter. Tetrahedron Lett 49:5241–5243. doi:10.1016/j.tetlet.2008.06.113

    Article  CAS  Google Scholar 

  65. Guchhait SK, Madaan C (2010) Towards molecular diversity: dealkylation of tert-butyl amine in Ugi-type multicomponent reaction product establishes tert-butyl isocyanide as a useful convertible isonitrile. Org Biomol Chem 8:3631–3634. doi:10.1039/c0ob00022a

    Article  CAS  PubMed  Google Scholar 

  66. Pereshivko OP, Peshkov VA, Ermolat’ev DS, Van der Eycken E (2013) Fast Assembly of 1\(H\)-Imidazo[1,2-\(a\)]imidazol-5-amines via Groebke–Blackburn–Bienaymé reaction with 2-Aminoimidazoles. Synlett 24:351–354

    Article  CAS  Google Scholar 

  67. Rostamnia S, Lamei K, Mohammadquli M, Sheykhan M, Heydari A (2012) Nanomagnetically modified sulfuric acid (\(\gamma \)-Fe2O3@SiO2-OSO3H): an efficient, fast, and reusable green catalyst for the Ugi-like Groebke–Blackburn–Bienaymé three-component reaction under solvent-free conditions. Tetrahedron Lett 53:5257–5260. doi:10.1016/j.tetlet.2012.07.075

    Article  CAS  Google Scholar 

  68. Chen JJ, Golebiowski A, McClenaghan J, Klopfenstein SR, West L (2001) Universal rink-isonitrile resin: application for the traceless synthesis of 3-acylamino imidazo[1,2-a]pyridines. Tetrahedron Lett 42:2269–2271. doi:10.1016/S0040-4039(01)00159-9

    Article  CAS  Google Scholar 

  69. Lu Y, Zhang W (2004) Microwave-assisted Synthesis of a 3-Aminoimidazo[1,2-a]-pyridine/pyrazine Library by fluorous multicomponent reactions and subsequent cross-coupling reactions. QSAR Comb Sci 23:827–835. doi:10.1002/qsar.200420045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee C, Hsu W, Chen C, Sun C (2013) A telescoping synthesis of chimeric polyheterocycles through a piperidine-mediated multicomponent reaction. Eur J Org Chem 2013:2201–2208. doi:10.1002/ejoc.201201645

    Article  CAS  Google Scholar 

  71. Mert-Balci F, Conrad J, Beifuss U (2012) Microwave-assisted three-component reaction in conventional solvents and ionic liquids for the synthesis of amino-substituted imidazo[1,2-a]pyridines. Arkivoc iii, pp 243–256, doi:10.3998/ark.5550190.0013.318

  72. Bell CE, Shaw AY, De Moliner F, Hulme C (2014) MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines. Tetrahedron 7:54–59. doi:10.1016/j.tet.2013.11.035

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968. doi:10.3762/bjoc.9.232

    Article  PubMed  PubMed Central  Google Scholar 

  74. Georgescu E, Georgescu F, Draghici C, Cristian L, Popa MM, Dumitrascu F (2013) Fast and green one-pot multicomponent synthesis of a library of pyrrolo [1,2-c] pyrimidines under microwave irradiation. Comb Chem High T Scr 16:851–857. doi:10.2174/13862073113169990050

    CAS  Google Scholar 

  75. Wang SL, Zhang G, Jie D, Jiang B, Wang XH, Tu SJ (2012) Microwave-assisted multicomponent reactions: rapid and regioselective formation of new extended angular fused aza-heterocycles. Comb Chem High T Scr 15:400–410. doi:10.2174/138620712800194459

    CAS  Google Scholar 

  76. Jiang B, Tu SJ (2011) Active methylene-based multicomponent reactions under microwave heating. Chimia (Aarau) 65:925–931. doi:10.2533/chimia.2011.925

    Article  CAS  Google Scholar 

  77. Ireland SM, Tye H, Whittaker M (2003) Microwave-assisted multi-component synthesis of fused 3-aminoimidazoles. Tetrahedron Lett 44:4369–4371. doi:10.1016/S0040-4039(03)00941-9

    Article  CAS  Google Scholar 

  78. Guasconi M, Lu X, Massarotti A, Caldarelli A, Ciraolo E, Tron GC, Hirsch E, Sorba G, Pirali T (2011) Groebke multicomponent reaction and subsequent nucleophilic aromatic substitution for a convenient synthesis of 3,8-diaminoimidazo[1,2-a]pyrazines as potential kinase inhibitors. Org Biomol Chem 9:4144–4149. doi:10.1039/c1ob05336a

    Article  CAS  PubMed  Google Scholar 

  79. Salunke DB, Yoo E, Shukla NM, Balakrishna R, Malladi SS, Serafin KJ, Day VW, Wang X, David SA (2012) Structure-activity relationships in human Toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J Med Chem 55:8137–8151. doi:10.1021/jm301066h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arnould M, Hiebel MA, Massip S, Leger JM, Jarry C, Berteina-Raboin S, Guillaumet G (2013) Efficient metal-free synthesis of various pyrido[\(2^\prime,1^\prime :2,3\)]imidazo- [4,5-b]quinolines. Chemistry 19:12249–12253. doi:10.1002/chem.201300961

    Article  CAS  PubMed  Google Scholar 

  81. Semreen MH, El-Awady R, Abu-Odeh R, Saber-Ayad M, Al-Qawasmeh RA, Chouaib S, Voelter W, Al-Tel TH (2013) Tandem multicomponent reactions toward the design and synthesis of novel antibacterial and cytotoxic motifs. Curr Med Chem 20:1445–1459. doi:10.2174/0929867311320110007

    Article  CAS  PubMed  Google Scholar 

  82. Lacerda RB, Sales NM, da Silva LL, Tesch R, Miranda AL, Barreiro EJ, Fernandes PD, Fraga CA (2014) Novel potent imidazo[1,2-a]pyridine-\(N\)-Glycinyl-hydrazone inhibitors of TNF-alpha production: in vitro and in vivo studies. PLoS One 9:e91660. doi:10.1371/journal.pone.0091660

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mandair GS, Light M, Russell A, Hursthouse M, Bradley M (2002) Re-evaluation of the outcome of a multiple component reaction–2- and 3-amino-imidazo[1,2-a]pyrimidines? Tetrahedron Lett 43:4267–4269. doi:10.1016/S0040-4039(02)00709-8

    Article  CAS  Google Scholar 

  84. Bode ML, Gravestock D, Moleele SS, van der Westhuyzen CW, Pelly SC, Steenkamp PA, Hoppe HC, Khan T, Nkabinde LA (2011) Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 19:4227–4237. doi:10.1016/j.bmc.2011.05.062

    Article  CAS  PubMed  Google Scholar 

  85. Antuch W, Menon S, Chen QZ, Lu Y, Sakamuri S, Beck B, Schauer-Vukasinovic V, Agarwal S, Hess S, Domling A (2006) Design and modular parallel synthesis of a MCR derived alpha-helix mimetic protein-protein interaction inhibitor scaffold. Bioorg Med Chem Lett 16:1740–1743. doi:10.1016/j.bmcl.2005.11.102

    Article  CAS  PubMed  Google Scholar 

  86. Jang ES, Lee SY, Cha EJ, Sun IC, Kwon IC, Kim D, Kim YI, Kim K, Ahn CH (2014) Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe. Pharm Res 31:3371–3378. doi:10.1007/s11095-014-1426-z

    Article  CAS  PubMed  Google Scholar 

  87. Chevalier A, Renard PY, Romieu A (2014) Straightforward access to water-soluble unsymmetrical sulfoxanthene dyes: application to the preparation of far-red fluorescent dyes with large stokes’ shifts. Chem-Eur J 20:8330–8337. doi:10.1002/chem.201402306

    Article  CAS  PubMed  Google Scholar 

  88. Gracie K, Smith WE, Yip P, Sutter JU, Birch DJ, Graham D, Faulds K (2014) Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy. Analyst 139:3735–3743. doi:10.1039/c4an00680a

    Article  CAS  PubMed  Google Scholar 

  89. Szczurek AT, Prakash K, Lee HK, Zurek-Biesiada DJ, Best G, Hagmann M, Dobrucki JW, Cremer C, Birk U (2014) Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 5:331–340. doi:10.4161/nucl.29564

    Article  PubMed  PubMed Central  Google Scholar 

  90. Woydziak ZR, Fu L, Peterson BR (2014) Efficient and scalable synthesis of 4-carboxy-pennsylvania green methyl ester: a hydrophobic building block for fluorescent molecular probes. Synthesis 46:158–164. doi:10.1055/s-0033-1338535

    PubMed  PubMed Central  Google Scholar 

  91. Burchak ON, Mugherli L, Ostuni M, Lacapere JJ, Balakirev MY (2011) Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. J Am Chem Soc 133:10058–10061. doi:10.1021/ja204016e

    Article  CAS  PubMed  Google Scholar 

  92. Cai R, Wang D, Chen Y, Yan W, Geise NR, Sharma S, Li H, Petersen JL, Li M, Shi X (2014) Facile synthesis of fluorescent active triazapentalenes through gold-catalyzed triazole-alkyne cyclization. Chem Commun 50:7303–7305. doi:10.1039/c4cc03175j

    Article  CAS  Google Scholar 

  93. Pais VF, Lassaletta JM, Fernandez R, El-Sheshtawy HS, Ros A, Pischel U (2014) Organic fluorescent thermometers based on borylated arylisoquinoline dyes. Chemistry 20:7638–7645. doi:10.1002/chem.201402027

    Article  CAS  PubMed  Google Scholar 

  94. Sun JW, Lee JH, Moon CK, Kim KH, Shin H, Kim JJ (2014) A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv Mater 26:5684–5688. doi:10.1002/adma.201401407

    Article  CAS  PubMed  Google Scholar 

  95. Li L, Hopkinson MN, Yona RL, Bejot R, Gee AD, Gouverneur V (2011) Convergent \(^{18}\text{ F }\) radiosynthesis: a new dimension for radiolabelling. Chem Sci 2:123–131. doi:10.1039/C0SC00362J

    Article  CAS  Google Scholar 

  96. Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV (2011) N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIalpha and induce apoptosis in G1/S phase. J Med Chem 54:5013–5030. doi:10.1021/jm200235u

    Article  CAS  PubMed  Google Scholar 

  97. Sanghai N, Jain V, Preet R, Kandekar S, Das S, Trivedi N, Mohapatra P, Priyadarshani Garima, Kashyap Maneesh, Das D, Satapathy SR, Siddharth S, Guchhait SK, Kundu CN, Bharatamab PV (2014) Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents. Med Chem Comm 6:766–782. doi:10.1039/C3MD00357D

    Article  Google Scholar 

  98. Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlén A, Larhed M (2009) Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg Med Chem Lett 19:4790–4793. doi:10.1016/j.bmcl.2009.06.045

    Article  CAS  PubMed  Google Scholar 

  99. Kumar M, Makhal B, Gupta VK, Sharma A (2014) In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 50:1–9. doi:10.1016/j.jmgm.2014.02.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Chemistry, Faculty of Science, Mansoura University and the Applied Organic Chemistry department, National Research Centre, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Shaaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, S., Abdel-Wahab, B.F. Groebke–Blackburn–Bienaymé multicomponent reaction: emerging chemistry for drug discovery. Mol Divers 20, 233–254 (2016). https://doi.org/10.1007/s11030-015-9602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9602-6

Keywords

Navigation