Skip to main content
Log in

Recent developments in utility of green multi-component reactions for the efficient synthesis of polysubstituted pyrans, thiopyrans, pyridines, and pyrazoles

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Developments made since 2010 in the utilization of multi-component reactions as green efficient methodologies for the synthesis of polysubstituted pyrans, thiopyrans, pyridines, and pyrazoles are reviewed and the mechanisms of these processes are discussed. Reference is made to classical older synthetic methods developed earlier in our laboratories.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61

Similar content being viewed by others

References

  1. Biginelli P (1893) Synthesis of 3,4-dihydropyrimidin-2(\(1H\))-ones. Gazz Chim Ital 23:360–413

    Google Scholar 

  2. Hantzsh A (1882) Condensationsprodukte aus aldehydammoniak und ketonartigen verbindungen. Liebigs Ann 1:215–218

    Google Scholar 

  3. Mannich C, Krosche W (1912) Ueber ein kondensationsproduket aus formaldehyde, ammoniak und antipyrin. Arch Pharm 250:647–649

    CAS  Google Scholar 

  4. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    PubMed  Google Scholar 

  5. Anastas PT, Eqbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. doi:10.1039/B918763B

    CAS  PubMed  Google Scholar 

  6. Elnagdi MH, Sadek KU, Moustafa MS (2013) Recent advances in the synthesis of polysubstituted heterocycles. Adv Heterocycl Chem 109:241–312. doi:10.1016/B978-0-12-407777-5.00003-8

    CAS  Google Scholar 

  7. Elnagdi MH, Sadek KU, Moustafa MS, Al-Mousawi SM (2015) Modern chemistry of aromatic heterocycles; their synthesis & biosynthesis and their role in life. Austin Macauley Publisher, London

    Google Scholar 

  8. Elnagdi MH, Moustafa SM, Sadek KU (2014) Green synthesis of biologically relevant heterocycles. Lambered Academic Publishing, Saarbrücken

    Google Scholar 

  9. Cai SX, Fick DB, Keana JFW, Konkoy CS, Lan NC (2004) Substituted 5-oxo-5,6,7,8-tetrahydro-\(4H\)-1-benzopyrans and benzothiopyrans and the use therefore as potentiators of AMPA. Patent US2000/015307

  10. Xu F, Peng G, Phan T, Dilip U, Chen JL, Chernov-Rogan T, Zhang X, Grindstaff K, Annamalai T, Koller K, Gallop MA, Wustrow DJ (2011) Discovery of a novel potent \(\text{ GABA }_{{\rm B}}\) receptor agonist. Bioorg Med Chem Lett 21:6582–6585. doi:10.1016/j.bmcl.2011.08.006

    CAS  PubMed  Google Scholar 

  11. Quinteiro M, Seoane C, Soto JL (1979) 4\(H\)-piranos a partir de a-benzoilcinamatos de etilo. Rev Roum de Chim 24:859–863

    CAS  Google Scholar 

  12. Elnagdi MH, Abdel-Motaleb RM, Mustafa M, Zayed MF, Kamel EM (1987) Heterocyclic enamines. New synthesis of \(4H\)-pyranes, pyranopyrazoles and pyranopyrimidines. J Heterocycl Chem 24:1677–1681. doi:10.1002/jhet.5570240635

    CAS  Google Scholar 

  13. Litvinov YM, Shestopalov AM (2011) Synthesis, structure, chemical reactivity, and practical significance of 2-amino-\(4H\)-pyrans. Adv Heterocycl Chem 103:175–260. doi:10.1016/B978-012-386011-8-00003-4

    CAS  Google Scholar 

  14. Elagamy AGA, El-Taweel FMAA, Khodeir MNM, Elnagdi MH (1993) Nitriles in heterocyclic synthesis. The reaction of polyhydric naphthalenes, 4-methylcoumarin-3-carbonitrile, and alkylidenemalononitrile with methylenemalononitrile. Bull Chem Soc Jpn 55:464–468. doi:10.1246/bcsi.66.464

    Google Scholar 

  15. Mekheimer RA, Mohamed NH, Sadek KU (1997) Synthesis of functionalized \(4H\)-pyrano[3,2-\(c\)]pyridines from 4-hydroxy-6-methyl-2-pyridones. Unexpected new route to 3,3\(^\prime \)-benzilidinebis[4-hydroxy-6-methyl-2(\(1H\))-3-pyridinone]s. Bull Chem Soc Jpn 70:1625–1630. doi:10.1246/bcsj.50.1625

  16. Abdu S, Fahmy SM, Sadek KU, Elnagdi MH (1981) Activated nitriles in heterocyclic synthesis: a novel synthesis of pyrano[2,3-\(c\)]pyrazoles. Heterocyocles 16:2177–2180. doi:10.3987/R-1981-12-2177

    Google Scholar 

  17. Elgemeie GEH, Sherif SM, Abd El-Aal FAEM, Elnagdi MH (1986) Nitriles in heterocyclic synthesis: Novel synthesis of \(4H\)-thiopyran and 2-hydroxy-6-pyridinethione derivatives. Z Naturforsch B Chem Sci 41B:781–783

    CAS  Google Scholar 

  18. Pratap UR, Jawale DV, Netankar PD, Mane RA (2011) Baker’s yeast catalyzed one-pot synthesis of polyfunctionalized \(4H\)-pyrans. Tetrahedron Lett 52:5817–5819. doi:10.1016/j.tetlet.2011.08.135

    CAS  Google Scholar 

  19. Pal AK, Saha M (2013) Fermented Baker’s yeast: an efficient catalyst for the synthesis of pyran derivatives in water at room temperature. Synth Commun 43:1708–1713. doi:10.1080/00397911.2012.665559

    Google Scholar 

  20. Fang D, Yang JMZH, Jiao C-M (2011) Synthesis of \(4H\)-pyrans catalyzed by thermol-regulated \(\text{ PEG }_{1000}\)-based ionic liquid/EM. J Indust Eng Chem 17:386–388. doi:10.1016/j-jiec.2010.09.028

    CAS  Google Scholar 

  21. Khurana JM, Chaudhary A (2012) Efficient and green synthesis of \(4H\)-pyrans and \(4H\)-pyrano[2,3-\(c\)]pyrazoles catalyzed by task-specific ionic liquid [bmim]OH under solvent- free conditions. Green Chem Lett Rev 5:633–638. doi:10.1080/17518253.2012.691183

    CAS  Google Scholar 

  22. Khurana JM, Vij K (2013) Nickel nanoparticles as semiheterogeneous catalyst for one-pot three component synthesis of 2-amino-\(4H\)-pyrans and pyran annulated heterocyclic moiety. Synth Commun 43:2294–2304. doi:10.1080/00397911.2012.700474

    CAS  Google Scholar 

  23. Safaei-Ghomi J, Teymuri R, Shahbazi-Alavi H, Ziarati A (2013) \(\text{ SnCl }_{2}/\text{ nano }\,\text{ SiO }_{2}\): a green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized \(4H\)-pyrans. Chinese Chem Lett 24:921–925. doi:10.1016/j.cclet.2013.06.021

    CAS  Google Scholar 

  24. Bhattacharyya P, Pradhan K, Paul S, Das AR (2012) Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated \(4H\)-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett 53:4687–4691. doi:10.1016/j.tetlet.2012.06.086

    CAS  Google Scholar 

  25. Zhang S-G, Yin SF, Wei Y-D, Luo S-L, Au CT (2012) Novel \(\text{ MgO }-\text{ SnO }_{2}\) solid support as a high-efficiency catalyst for one-pot solvent free synthesis of polyfunctionalized \(4H\)-pyran derivatives. Catal Lett 142:608–614. doi:10.1007/s10562-012-0805-5

  26. Valizadeh H, Azimi AA (2011) ZnO/MgO containing ZnO nanoparticles as a highly effective heterogeneous base catalyst for the synthesis of \(4H\)-pyrans and coumarins in [Bmim]\(\text{ BF }_{4}\). J Iran Chem Soc 8:123–130. doi:10.1007/BF03246209

    CAS  Google Scholar 

  27. Banerjee S, Horn A, Khatri H, Serreda GA (2011) Green one-pot multicomponent synthesis of \(4H\)-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett 52:1878–1881. doi:10.1016/j.tetlet.2011.02.031

  28. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-\(4H\)-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 44:3805–3809. doi:10.1016/jejmech.2009.04.017

    CAS  PubMed  Google Scholar 

  29. Ye Z, Xu R, Shao X, Xu X, Li Z (2010) One-pot synthesis of polyfunctionalized \(4H\)-pyran derivatives bearing fluorochloro pyridyl moiety. Tetrahedron Lett 51:4991–4994. doi:10.1016/j.ejmc.2009.04.017

    CAS  Google Scholar 

  30. Elnagdi MH, Al-Hokbany NS (2012) Organocatalysis in synthesis: \(L\)-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 17:4300–4312. doi:10.3390/molecules17044300

    CAS  PubMed  Google Scholar 

  31. Al-Mousawi SM, Moustafa MS, Elnagdi NMH, Elnagdi MH (2013) Studies with polyfunctional hetero aromatics and aromatics: synthesis of tetra- and penta-substituted benzoic and phthalic acid derivatives through reactions of acetylenic esters or diesters with arylidenemalononitriles in the presence of \(L\)-proline or DABCO. Curr Org Synth 10:791–797. doi:10.2174/1570179411310010002

    CAS  Google Scholar 

  32. Zhang X, Li X, Fan X, Wang X, Li D, Qu G, Wang J (2009) Ionic liquid promoted preparation of \(4H\)-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide. Mol Divers 13:57–61. doi:10.1007/S11030-008-9098-4

    PubMed  Google Scholar 

  33. Britsun VN, Esipenko AN, Lozinskii MO (2008) Heterocyclization of thioamides containing an active methylene group. Chem Heterocycl Compd 44:1429–1459. doi:10.1007/s10593-009-0124-x

    CAS  Google Scholar 

  34. Sun J, Xia E-Y, Wu Q, Yan C-G (2011) Synthesis of 3,4-dihydropyridin-2(\(1H\))-ones and 3,4-dihydro-\(2H\)-pyrans via four-component reactions of aromatic aldehydes, cyclic 1,3-carbonyls, arylamines and dimethyl acetylenedicarboxylate. ACS Comb Sci 13:421–426. doi:10.1021/co200045t

    CAS  PubMed  Google Scholar 

  35. Kazemi B, Javanshir S, Maleki A, Safari M, Khavasi HR (2012) An efficient synthesis of \(4H\)-chromene, \(4H\)-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett 53:6977–6981. doi:10.1016/j.tetlet.2012.10.046

    CAS  Google Scholar 

  36. Boominathan M, Nagaraj M, Muthusubramanian S, Krishnakumar RV (2011) Efficient atom economical one-pot multicomponent synthesis of densely functionalized \(4H\)-chromene derivatives. Tetrahedron 67:6057–6064. doi:10.1016/jtet.2011.06.021

    CAS  Google Scholar 

  37. Rostamnia S, Nuri A, Xin H, Pourjavadi A, Husseini SH (2013) Water dispersed magnetic nanoparticles (\(\text{ H }_{2}\text{ O }\)-DMNPs) of \({\upgamma }-\text{ Fe }_{2}\text{ O }_{3}\) for multicomponent coupling reactions: a green, single-pot technique for the synthesis of tetrahydro-\(4H\)-chromenes and hexahydroquinoline carboxylate. Tetrahedron Lett 54:3344–3347. doi:10.1016/j.tetlet.201304.048

    CAS  Google Scholar 

  38. Davarpanah J, Kiasat AR, Noorizadeh S, Ghahremani M (2013) Nanomagentic double-charged diazoniabicyclo[2.2.2]octane dichloride silica hybrid: synthesis, characterization, and application as an efficient and reusable organic-inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. J Mol Catal A 376:78–89. doi:10.1016/j.molcata.2013.04.020

    CAS  Google Scholar 

  39. Sarrafi Y, Mehrasbi E, Vahid A, Tajbakhsh M (2012) Well-ordered mesoporous silica nanoparticles as a recoverable catalyst for one-pot multicomponent synthesis of \(4H\)-chromene derivatives. Chin J Catal 33:1486–1494. doi:10.1016/S1872-2067(11)60423-3

    CAS  Google Scholar 

  40. Hasaninejad A, Glozar N, Beyratic M, Doroodmand A (2013) Silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-\(a\)]azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo[\(b\)]pyran, bis(benzo[\(b\)]pyran) and spiropyran derivatives. J Mol Catal A 372:137–150. doi:10.1016/j.molcata2013.02.022

    CAS  Google Scholar 

  41. Saha M, Das B, Pal AK (2013) Synthesis of pyran derivatives under ultrasound irradiation using Ni nanoparticles as reusable catalysts in aqueous medium. Comptes Rend Chim 16:1079–1085. doi:10.1016/j.crci.2013.05.012

    CAS  Google Scholar 

  42. Davoodnia A, Allameh S, Fazli S, Tavakoli HN (2011) One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[\(b\)]pyrans catalyzed by silica gel-supported polyphosphoric acid (PPA–\(\text{ SiO }_{2})\) as an efficient and reusable catalyst. Chem Pap 65:714–720. doi:10.2478/s11696-011-0064-8

    CAS  Google Scholar 

  43. Al-Matar HA, Khalil KD, Meier H, Kolshorn H, Elnagdi MH (2008) Chitosan as heterogeneous catalyst in Michael additions: the reaction of cinnamonitriles with active methylene moieties and phenols. Arkivoc XVI:288–301

    Google Scholar 

  44. Tahmassebi D, Bryson JA, Binz SI (2011) 1,4-Diazabicyclo[2.2.2]octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[\(b\)]pyran derivatives via multicomponent reaction in aqueous media. Synth Commun 41:2701–2711. doi:10.1080/00397911.2010.515345

    CAS  Google Scholar 

  45. Salvi PP, Mandhare AM, Sartape AS, Pawar DK, Han SH, Kolekar SS (2011) An efficient protocol for synthesis of tetrahydrobenzo[\(b\)]pyrans using amino functionalized ionic liquid. Comptes Rend Chimie 14:878–882. doi:10.1016/j.crci.2011.02.007

    CAS  Google Scholar 

  46. Khaksar S, Rouhollahpour A, Talesh SM (2012) A facile and efficient synthesis of 2-amino-3-cyano-\(4H\)-chromenes and tetrahydrobenzo[\(b\)]pyrans using 2,2,2-trifluoro-ethanol as reusable medium. J Fluor Chem 141:11–15. doi:10.1016/j.jfluchem.2012.05.014

    CAS  Google Scholar 

  47. Aziz N, Dezfooli S, Khajeh M, Hashemi MM (2013) Efficient deep eutectic solvents catalyzed synthesis of pyran and benzopyran derivatives. J Mol Liq 186:76–80. doi:10.1016/j.molliq.2013.05.011

    Google Scholar 

  48. Mekheimer RA, Abdelhameed AM, Mohamed SM, Sadek KU (2010) Green, three component highly efficient synthesis of 2-amino-5,6,7,8-tetrahydro-\(4H\)-chromen-3-carbonitriles in water at ambient temperature. Green Chem Lett Rev 3:161–163. doi:10.1016/j.molliq.2013.05.011

    CAS  Google Scholar 

  49. Nemouchi S, Boulcina R, Carbonic B, Debache A (2012) Phenylboronic acid as an efficient and convenient catalyst for a three-component synthesis of tetrahydrobenzo[\(b\)]pyrans. Comptes Rend Chim 15:394–397. doi:10.1016/j.crci.2012.01.003

    CAS  Google Scholar 

  50. Borhade AV, Uphade BK, Tope DR (2013) PbO as an efficient and reusable catalyst for one-pot synthesis of tetrahydro benzo pyrans and benzylidene malononitriles. J Chem Sci 25:583–589. doi:10.1007/s12039-013-0396-8

    Google Scholar 

  51. Khan AT, Lal M, Ali S, Khan M (2011) One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DAMP as a catalyst. Tetrahedron Lett 52:5327–5332. doi:10.1016/j.tetlet.2011.08.019

    CAS  Google Scholar 

  52. Zhang G, Zhang Y, Yan J, Chen Ru, Wang S, Ma Y, Wang R (2012) One-pot enantioselective synthesis of functionalized pyranocoumarines and 2-amino-\(4H\)-chromenes: discovery of a type of potent antibacterial agent. J Org Chem 77:878–888. doi:10.1021/j0202020m

    CAS  PubMed  Google Scholar 

  53. Undale KA, Park YK, Park K, Dagade DH, Pore DM (2011) A revisit to the Hantzsch reaction: unexpected formation of tetrahydrobenzo[\(b\)]pyrans beyond polyhydroquinolines. Synlett 6:791–796. doi:10.1055/s0030-1259924

    Google Scholar 

  54. Kumar S, Sharma P, Kapoor KK, Hundal MS (2008) An efficient catalyst and solvent free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64:536–542. doi:10.1016/j.tet.2007.11.008

    CAS  Google Scholar 

  55. Lei M, Hu L (2011) A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-\(c\)]quinolin-5-one derivatives catalyzed by ammonium acetate. Tetrahedron Lett 52:2597–2600. doi:10.1016/j.tetlet.2011.03.061

    CAS  Google Scholar 

  56. Elinson MN, Ilovaisky AI, Merkulova VM, Belyakov PA, Barba F, Batanero B (2012) General non-catalytic approach to spiroacenaphthylene heterocycles: multicomponent assembling of acenaphthenequinone, cyclic CH-acids and malononitrile. Tetrahedron 68:5833–5837. doi:10.1016/j.tetlet.2012.05.005

    CAS  Google Scholar 

  57. Fan X, Feng D, Qu Y, Zhang X, Wang J, Loiseau PM, Andrei GSR, Clercq ED (2010) Practical and efficient synthesis of pyrano[3,2-\(c\)]pyridine, pyrano[4,3-\(b\)]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorg Med Chem Lett 20:809–813. doi:10.1016/j.bmcl.2009.12.102

    CAS  PubMed  Google Scholar 

  58. Li Y, Zhao Bo DuB, Jiang Q, Wang X, Cai C (2013) Efficient and mild one-pot three-component reaction to synthesize pyrano[3,2-b]pyran derivatives in ionic liquid. Tetrahedron Lett 54:227–230. doi:10.1016/j.tetlet.2012.11.006

    CAS  Google Scholar 

  59. Banitaba SH, Safari J, Khalili SD (2013) Ultrasound promoted one-pot synthesis of 2-amino-\(4H\)-pyrans. Ultrasonic Sonochem 20:401–407. doi:10.1016/j.ultsonch.2012.07.007

    CAS  Google Scholar 

  60. Sadeghi B, Nezhad PF, Hashemian S (2014) \(\text{ SiO }_{2}\)-\(\text{ OSO }_{3}\text{ H }\) nanoparticles: an efficient, versatile and new reagent for the one-pot synthesis of 2-amino-8-oxo-4,8-dihydropyrano[3,2-\(b\)]pyran-3-carbonitrile derivatives in water, a green protocol. J Chem Res 38:54–57. doi:10.3184/174751914X13866053657371

    CAS  Google Scholar 

  61. Khurana JM, Magoo D, Chaudhary A (2012) Efficient and green approaches for the synthesis of \(4H\)-benzo[\(g\)]chromenes in water, under neat conditions, and using task-specific ionic liquid. Synth Commun 42:3211–3219. doi:10.1080/00397911.2011.580069

    CAS  Google Scholar 

  62. Patel JP, Avalani JR, Raval DK (2013) Polymer supported sulphanilic acid: a highly efficient and recyclable green heterogeneous catalyst for the construction of 4,5-dihydropyrano[3,2-\(c\)]chromenes under solvent-free conditions. J Chem Sci 125:531–536

    CAS  Google Scholar 

  63. Nagalapalli R, Jaggavarapu SR, Jalli VP, Kamalakaran AS, Gaddamanugu G (2013) Ultrasound promoted green and facile one-pot multicomponent synthesis of 3,4-dihydropyrano[\(c\)]chromene derivatives. J Chem 593803. doi:10.1155/2013/593803

  64. Eshlaghi MA, Mirza B, Zeeb M (2014) Green synthesis of 1-aryl-1,12-dihydrobenzo[\(h\)]pyrano[\(c\)]chromene derivatives. J Chem Res 38:341–342. doi:10.3184/174751914X13987950600120

    CAS  Google Scholar 

  65. Mekheimer RA, Sadek KU (2009) Microwave-assisted reactions: three component process for the synthesis for 2-amino-2-chromenes under microwave heating. J Heterocycl Chem 149:149–151. doi:10.1002/jhet.13

    Google Scholar 

  66. Albadi J, MansourneZahad A, Darvishi-Paduk M (2013) Poly(4-vinylpyridine): as a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin Chem Lett 24:208–210. doi:10.1016/j.cclet.2013.01.020

    CAS  Google Scholar 

  67. Al-Matar HM, Khalil KD, Adam AY, Elnagdi MH (2010) Green one pot solvent-free synthesis of pyrano[2,3-\(c\)]pyrazoles and pyrazolo[1,5-\(a\)]pyrimidines. Molecules 15:6619–6629. doi:10.3390/molecules150966/9

    CAS  PubMed  Google Scholar 

  68. Shestopalov AM, Yakubov AR, Tsyganov DV, Emlyanova YM, Nesterov VN (2002) Synthesis of substituted 6-amino-4-aryl-5-cyano-\(2H,4H\)-pyrano[2,3-\(c\)]pyrazoles. Crystal and molecular structure of 6-amino-5-cyano-3-methyl-4-(\(2^{\prime },4^{\prime },6^{\prime }\)-triethylphenyl)-\(2H,4H\)-pyrano[2,3-\(c\)]pyrazoles. Chem Heterocycl Compd 38:1180–1189

  69. Redkin RG, Shemchuk LA, Chernykh VP, Shishkin OV, Shishkina SV (2007) Synthesis and molecular structure of spirocyclic-2-oxindole derivatives of 2-amino-\(4H\)-pyran condensed with the pyrazolic nucleus. Tetrahedron 63:11444–11450. doi:10.1016/j.tet.2007.08.050

    CAS  Google Scholar 

  70. Myrboh B, Mecadon H, Rohman MdR, Rajbangshi M, Kharkongor I, Laloo BM, Kharbangar I, Kshiar B (2013) Synthetic developments in functionalized pyrano- [2,3-\(c\)]pyrazoles. A review. Org Prep Proceed 45:253–303. doi:10.1080/1003044948

    CAS  Google Scholar 

  71. Bora PP, Bihani M, Bez G (2013) Multicomponent synthesis of dihydropyrano[2,3-\(c\)]-pyrazoles catalyzed by lipase from \(Aspergillus niger\). J Mol Catal B 92:24–33. doi:10.1016/j.Molcatb.03.015

    CAS  Google Scholar 

  72. Kshirsagar SW, Patil NR, Samant SD (2011) Mg–Al hydrotalcite as a first heterogenous basic catalyst for the synthesis of \(4H\)-pyrano[2,3-\(c\)]pyrazoles through a four-component reaction. Synth Commun 41:1320–1325. doi:10.1080/00397911.2010.481753

    CAS  Google Scholar 

  73. Khurana JM, Nand B, Kumar S (2011) Rapid synthesis of polyfunctionalized pyrano- [2,3-\(c\)]pyrazoles via multicomponent condensation in room temperature ionic liquids. Synth Commun 41:405–410. doi:10.1080/003979109035-76669

    CAS  Google Scholar 

  74. Guo R-Y, An Z-M, Mo L-P, Yang S-T, Liu H-X, Wang S-X, Zhang Z-H (2013) Meglumine promoted one-pot, four component synthesis of pyrano pyrazole derivatives. Tetrahedron 69:9931–9938. doi:10.1016/j.tet.2013.09.082

    CAS  Google Scholar 

  75. Paul S, Pradhan K, Ghosh S, De SK, Das AR (2014) Uncapped \(\text{ SnO }_{2}\) quantum dot catalyzed cascade assembling of four components: a rapid and green approach to the pyrano[2,3-\(c\)]-pyrazole and spiro-2-oxindole derivatives. Tetrahedron 70:6088–6099. doi:10.1016/j.tet.2014.02.077

    CAS  Google Scholar 

  76. Abd El Aleem M, El-Remaily AA (2014) Synthesis of pyranopyrazoles using magnetic \(\text{ Fe }_{3}\text{ O }_{4}\) nanopa rticles as efficient and reusable catalyst. Tetrahedron 70:2971–2975. doi:10.1016/j.tet.2014.03.024

    Google Scholar 

  77. Tamaddon F, Alizadeh M (2014) A four-component synthesis of dihydropyrano[2,3-\(c\)]-pyrazoles in a new water-based worm-like micellar medium. Tetrahedron Lett 55:3588–3591. doi:10.1016/j.tetlet.2014.04.122

    CAS  Google Scholar 

  78. Farahi M, Karami B, Sedighimehr I, Tanuraghai HM (2014) An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-\(c\)]pyrazole derivatives catalyzed by tungstate sulfuric acid. Chin Chem Lett 25:1580–1582. doi:10.1016/j.cclet.2014.07.012

    CAS  Google Scholar 

  79. Moeinpour F, Khojastehnezhad A (2014) Polyphosphoric acid supported on \(\text{ Ni }_{0.5}\text{ Zn }_{0.5}\text{ Fe }_{2}\text{ O }_{4}\) nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles. Arab J Chem (in press) doi:10.1016/j.arabjc.2014.02.009

  80. Elinson MN, Nasybullin RF, Nikishin GI (2013) Sodium acetate catalyzed tandem Knoven-enagel-Michael multicomponent reaction of aldehydes, 2-pyrazolin-5-ones, and cyano-functionalized C-H acids: Facile and efficient way to 3-(5-hydroxypyrazol-4-yl)-3-aryl-propionitriles. Comptes Rend Chim 16:789–794. doi:10.1016/icrci.2013.03.003

    CAS  Google Scholar 

  81. Bhosale VN, Angulwar JA, Khansole GS, Waghmare GS (2014) One-pot three-component condensation for the synthesis of 1,4-dihydropyrano[2,3-\(c\)]pyrazoles using cesium fluoride as an efficient catalyst. J Chem Pharm Res 6:733–737

    Google Scholar 

  82. Radi M, Bernardo V, Bechi B, Castagnolo D, Pagano M (2009) Microwave-assisted organocatalytic multicomponent Knoevenagel/hetero Diels–Alder reaction for the synthesis of 2,3-dihydropyrano[2,3-\(c\)]pyrazoles. Tetrahedron Lett 50:6572–6575. doi:10.1016/j.tetlet.2009.09.047

    CAS  Google Scholar 

  83. Shaabani A, Sarvary A, Rezayan AH, Keshipour S (2009) Synthesis of fully substituted pyrano[2,3-\(c\)]pyrazole derivatives via a multicomponent reaction of isocyanides. Tetrahedron 65:3492–3495. doi:10.1016/j.tet.2009.03.035

    CAS  Google Scholar 

  84. Patel NB, Agravat SN (2009) Synthesis and antimicrobial studies of new pyridine derivatives. Chem Heterocycl Compd 45:1343–1354. doi:10.1007/s10593-010-0432-2

    CAS  Google Scholar 

  85. Boger DL, Panek JS, Meier MM (1982) Diels–Alder reaction of heterocyclic azadienes.2. “Catalytic” Diels–Alder reaction in situ generated enamines with 1,2,4-triazines: general pyridine annulation. J Org Chem 47:895–897. doi:10.1021/jo00344a032

    CAS  Google Scholar 

  86. Hibino S, Sugino E, Kuwada T, Ougura N, Sat KCL (1992) Synthesis of genotoxic heterocyclic amines Trp-P-1 and Trp-P-2. J Org Chem 57:5917–5921. doi:10.1021/jo1000048a.026

    CAS  Google Scholar 

  87. Chelucci G, Falorni M, Giocomelli G (1990) Synthesis of 1-substituted 2-[(2S)-2-pyrrolidinyl]pyridine from \(L\)-proline. Synthesis 12:1121–1122. doi:10.1055/s-1990-27109

    Google Scholar 

  88. Henry GD (2004) De novo synthesis of substituted pyridines. Tetrahedron 60:6043–6060. doi:10.1016/j.tet.2004.04.043

    CAS  Google Scholar 

  89. Hill MW (2010) Recent strategies for the synthesis of pyridine derivatives. Chem A Eur J 6:12052–12062. doi:10.1002/chem.201001100

    Google Scholar 

  90. AbdelKhalik MM, Elnagdi MH (2002) Enaminones in organic synthesis. A Novel synthesis of 1,3,5-trisubstituted benzene derivatives and of 2-substituted-5-aroylpyridines. Synth Commun 32:159–164. doi:10.1081/scc.120001996

    CAS  Google Scholar 

  91. Al-zaydi KM, Nhair LM, Borik RM, Elnagdi MH (2010) Green technologies in organic synthesis: self-condensation of enamines, enaminones and enaminoesters under microwave irradiation in ionic liquid. Green Chem Lett Rev 3:93–99. doi:10.1080/17518250903567261

    CAS  Google Scholar 

  92. Reddy GJ, Latha D, Thirupathiah C, Rao KS (2005) A facile synthesis of 2,3-disubstituted-6-arylpyridines from enaminones using montmorillonite K10 as solid acid support. Tetrahedron Lett 46:301–302. doi:10.1016/j.tetlet.2004.11.071

    CAS  Google Scholar 

  93. Al-Matar HM, Adam AY, Khalil KD, Elnagdi MH (2012) Studies with 3-oxoalkanenitriles: novel rearrangements observed while exploring the utility of 2-cyanoacetyl-1-methylpyrroles as a precursor to pyrrole substituted heterocyclic compounds. Arkivoc VI:1–15

    Google Scholar 

  94. Behbehani H, Ibrahim HM, Elnagdi MH (2013) Non-concerted nucleophilic [4+1]cycloaddition of (dimethylamino) methoxycarbene to arylazonicotinates in the synthesis of pyrazolo[3,4-\(c\)]pyridines and pyrazolo[\(4^{\prime },3^{\prime }\):4,5]pyrido[2,3-\(d\)]pyrimidines. Tetrahedron 69:6176–6184. doi:10.1016/j.tet.2013.05.040

    CAS  Google Scholar 

  95. Al-Mousawi SM, Moustaf MS, Abdelhamid IA, Elnagdi MH (2011) Reassignment of the structures of condensation products of \(\upalpha \)-keto \(\upalpha ^{\prime }\)-formylarylhydrazones with ethyl cyanoacetate: a novel route to ethyl 5-arylazo-2-hydroxynicotinates. Tetrahedron Lett 52:202–204. doi:10.1016/j.tetlet.2010.10.127

    CAS  Google Scholar 

  96. Siddiqui N, Ahsan W, Alam MS, Ali R, Srivastava K (2012) Design, synthesis and evaluation of anticonvulsant activity of pyridinyl-pyrrolidones: a pharmacophore hybrid approach. Arch Pharm Chem Life Sci 345:185–194. doi:10.1002/ardf.201100140

    CAS  Google Scholar 

  97. Tang J, Wang L, Yao Y, Zhang L, Wang W (2011) One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by ytterbium perfluorooctanoate [\(\text{ Yb }(\text{ PFO })_{3}\)]. Tetrahedron Lett 52:509–511. doi:10.1016/j.tetlet.2010.11.102

    CAS  Google Scholar 

  98. Pagadala R, Maddila S, Moodley V, van Zyl WE (2014) An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Lett 55:4006–4010. doi:10.1016/j.tetlet.2014.05.089

    CAS  Google Scholar 

  99. Safari J, Baitaba SH, Khalil SD (2012) Ultrasound-promoted an efficient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: a rapid procedure without catalyst. Ultrason Sonochem 19:1061–1069. doi:10.1016/j.ult.sonch.2012.01.005

    CAS  PubMed  Google Scholar 

  100. Al-Zadi KM, Borik RM, Mekheimer RA, Elnagdi MH (2010) Green chemistry: a facile synthesis of polyfunctionally substituted thieno[3,4-\(c\)]pyridinones and thieno[3,4-\(d\)]-pyridazinones under neat reaction conditions. Ultrasonic Sonochem 17:909–915. doi:10.1016/j.ultsonch.12.008

    Google Scholar 

  101. Shinde PV, Labade VB, Gujar JB, Shingate BB, Shingare MS (2012) Bismuth triflate catalyzed solvent-free synthesis of 2,4,6-triaryl pyridines and an unexpected selective acetalization of tetrazolo[1,5-\(a\)]quinolone-4-carbaldehyde. Tetrahedron Lett 53:1523–1527. doi:10.1016/j.tetlet.2012.01.059

  102. Li J, He P, Yu C (2012) DPTA-catalyzed one-pot regioselective synthesis of polysubstituted pyridines and 1,4-dihydropyridines. Tetrahedron 68:4138–4144. doi:10.1016/j.tet.2012.03.104

  103. Banerjee S, Sereda G (2009) One-step, three-component synthesis of highly substituted pyridines using silica nanoparticles as reusable catalyst. Tetrahedron Lett 50:6959–6962. doi:10.1016/j.tetlet.2009.09.137

    CAS  Google Scholar 

  104. Safaei-Ghomi J, Ghasemzadeh MA, Mehrabi M (2013) Calcium oxide nanoparticles catalyzed one-step multicomponent synthesis of highly substituted pyridines in aqueous ethanol media. Chem Chem Eng 20:549–554. doi:10.1016/j.scient.2012.12.037

    CAS  Google Scholar 

  105. Evdokimov NM, Magedov IV, Kireev AS, Kornienko A (2006) One-step, three-component synthesis of pyridines and dihydropyridines with manifold medicinal utility. Org Lett 5:899–902. doi:10.1021/ol052994

    Google Scholar 

  106. Guo K, Thompson MJ, Reddy TRK, Mutter R, Chen B (2007) Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitriles. Tetrahedron 63:5300–5311. doi:10.1016/j.tet.2007.03.139

    CAS  Google Scholar 

  107. Al-Mousawi SM, Moustafa MS, Elnagdi MH (2011) Green synthetic approaches: solventless synthesis of polyfunctional substituted aromatics as potential versatile building blocks in organic synthesis utilizing enaminones and enaminonitriles as precursors. Green Chem Lett Rev 4:185–193. doi:10.1080/17518253.2010.528049

    CAS  Google Scholar 

  108. Hilmy NM, El-Baih FEM, Al-Alshaikh MA, Moustafa MS (2011) A route to dicyanomethylene pyridines and substituted benzotriazole utilizing malononitrile dimer as a precourser. Molecules 16:298–306. doi:10.3390/molecules160.10298

    Google Scholar 

  109. Moustafa SM, Al-Mousawi SM, Hilmy NM, Ibrahim YA, Liermann JC, Meier H, Elnagdi MH (2013) Unexpected behavior of enaminones: interesting new route to 1,6-naphyridines, 2-oxopyrrolidines and pyrano[4,3,2- de][1,6]naphthyridines. Molecules 18:276–286. doi:10.3390/molecules18010276

    CAS  Google Scholar 

  110. Elnagdi MH, Elmoghyar MRH, Hamman AEG, Khallaf SA (1979) The reaction of malononitrile with thioglycolic acid. A novel procedure for the synthesis of thiazolone derivatives. J Heterocycl Chem 16:1541–1543. doi:10.1002/jhet.5570160804

    CAS  Google Scholar 

  111. Elmoghyar MRH, Ibrahim MKA, Elghandour AHH, Elnagdi MH (1981) A novel synthesis of thiazolo[3,2-\(a\)]pyridine derivatives. Synthesis 635–637. doi:10.1055/s-1981-29554

  112. Sadek KU, Mourad AEE, Abd-Elhafeez AE, Elnagdi MH (1983) Activated nitriles in heterococyclic synthesis: synthesis and reactivity of 4-oxo-4,5-dihydro-1,3-thiazol-2-acetamide. Synthesis 739–741. doi:10.1055/s-1983-30494

  113. Elgemeie GEH, Elfahham HA, Hassan SME, Elnagdi MH (1983) Activated nitriles in heterocyclic synthesis: the reaction of nitriles with mercapto acids. Z Naturforsch Chem Sci 38B:781–783

    CAS  Google Scholar 

  114. Osman SAM, Elgemeie GEH, Nawar GAM, Elnagdi MH (1986) Activated nitriles in heterocyclic synthesis. Synthesis of 6-thiophene-2-yl- and 6-furan-2-ylthiazolo[2,3-\(a\)]-pyridine derivatives. Monatsch Chem 117:105–110. doi:10.1007/BF00809177

    CAS  Google Scholar 

  115. Saito K, Kambe S, Sakurai A, Midorikawa H (1982) A one-pot synthesis of thiophene derivatives. Synthesis 1056–1059. doi:10.1055/s-1982-30063

  116. Kambe S, Saito K, Sakurai A, Midorikawa H (1981) Synthetic studies using \(\alpha ,\beta \)-unsaturated nitriles: facile synthesis of pyridine derivatives. Synthesis 531–533. doi:10.1055/s-1981-29513

  117. El-Maghraby AA, Ali G, Ahmed AAA, El-Gaby MSA (2002) Studies on thiazolopyridines. Part 1: antimicrobial activity of some novel fluronated thiazolo[3,2-\(a\)]pyridines and thiazolo[\(2^{\prime },3^{\prime }\):1,6]pyrido[2,3-\(d\)]pyrimidines. Phosph Sulfur Silicon Relat Elem 177:293–302. doi:10.1080/10426500210240

    CAS  Google Scholar 

  118. Krauze A, Popelis J, Dubrus G (1998) Efficient regioselective one-pot synthesis of partially hydrogenated thiazolo[3,2-\(a\)]pyridines. Tetrahedron 54:9161–9168. doi:10.1016/s0040-4022(98)00553-5

    CAS  Google Scholar 

  119. Elnagdi MH, Elmoghyar MRH, Elghandour AHH, Sade KU (1989) The reaction of thioglycolic acid with \(\alpha,\beta \)-unsaturated nitriles. A new route for the synthesis of \(7H\)-thiazolo[3,2-\(a\)]pyridines. Sulfur Lett 9:109–122

    CAS  Google Scholar 

  120. Mekheimer RA, Hilmy NM, Abdel Hameed A, Dacrory S, Sadek KU (2011) Simple, three-component highly efficient green synthesis of thiazolo[3,2-\(a\)]pyridine derivatives under neat conditions. Synth Commun 41:2511–2516. doi:10.1080/00397911.2010.505700

    CAS  Google Scholar 

  121. Chen H-L, Guo H-Y (2012) One-pot synthesis of thiazolo[3,2-\(a\)]pyridine derivatives catalyzed by ionic liquids. J Chem Res 36:162–165. doi:10.1002/chim.201233173

    CAS  Google Scholar 

  122. Shi F, Li C, Xia M, Miao K, Zhao Y, Tu S, Zheng W, Ge Zhang, Ma N (2009) Green chemoselective synthesis of thiazolo[3,2-\(a\)]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg Med Chem Lett 19:5565–5568. doi:10.1016/j.bmcl.2009.08.046

    CAS  PubMed  Google Scholar 

  123. Abdelrazek FM, Michael FA, Mohamed AE (2006) Synthesis and molluscicidal activity of some 1,3,4-triaryl-5-chloropyrazole, pyrano[2,3-\(c\)]pyrazole, pyrazolophthalazine and pyrano[2,3-\(d\)]thiazole derivatives. Arch Pharm 339:305–312. doi:10.1002/ardp.200500259

    CAS  Google Scholar 

  124. Altug C, Burnett AK, Caner E, Durust Y, Elhott MC, Glanville RPJ, Guy C, Westwell AD (2011) An efficient one-pot multicomponent approach to 5-amino-7-aryl-8-nitrothiazolo-[3,2-\(a\)]pyridines. Tetrahedron 67:9522–9528. doi:10.1016/j.tet.2011.10.005

    CAS  Google Scholar 

  125. Perrino MP, Villar GR, Sanudo MC, Calvo LA, Gonzalez-Ortega A (2010) One-step synthesis of thiazolo[3,2-\(a\)]pyridines by a multicomponent reaction of \(\beta \)-enaminonitriles, \(\alpha,\beta \)-unsaturated aldehydes, and 2-aminothiol hydrochlorides. Tetrahedron 66:2815–2822. doi:10.1016/j.tet.2011.10.005

    CAS  Google Scholar 

  126. Elnagdi MH, Elmoghyar MRH, Sadek KU (1990) Chemistry of pyrazoles condensed to heteroaromatic five- and six-membered rings. Adv Heterocycl Chem 48:223–299. doi:10.1016/s0065-2725(08)60340-2

    CAS  Google Scholar 

  127. Anwar HF, Elnagdi MH (2009) Recent developments in aminopyrazole chemistry. Arkivoc I:198–250

    Google Scholar 

  128. Elguero J, Silva AMS, Tome AC (2011) Five membered heterocycles: 1,2-azoles. Part 1. Pyrazoles. Modern Heterocycl Chem 2:635–725. doi:10.1002/9783527637737ch8

    CAS  Google Scholar 

  129. Aggarwal R, Kumar V, Kumar R, Singh SP (2011) Approaches towards the synthesis of 5-aminopyrazoles. Biel J Org Chem 7:179–197. doi:10.37621/bioc.7.25

    CAS  Google Scholar 

  130. Rothenberg E (1894) Hydrazinhydrat auf cyanoessigester und malononitril. Chem Ber 27:685–691. doi:10.1002/cher.189402701133

    Google Scholar 

  131. Taylor EC, Hartke KS (1959) The reaction of malononitrile with hydrazine. J Am Chem Soc 81:2452–2455. doi:10.1021/ja01519a044

    CAS  Google Scholar 

  132. Grey EJ, Stevens HNE, Stevens MPG (1978) Triazines and related products. Part 21. Cyclisation of 3-amino-5-hydrazinopyrazole and 3-amino-5-hydrazino-1,2,4-triazole to azolo[5,1-\(c\)][1,2,4]triazines. J Chem Soc Perkin Trans 1:885–888

    Google Scholar 

  133. Echevarria A, Maartin M, Perez C, Rozas I (1994) Synthesis of 4-alkylpyrazoles as inhibitors of liver alcohol dehydrogenase. Arch Pharm 327:303–305. doi:10.1002/ardp.19943270507

    CAS  Google Scholar 

  134. Vaqueor JJ, Fuentes L, Del Castillo JC, Perez MI, Garcia JL, Soto JL (1987) 3-Alkoxy-acroleins in organic synthesis. Synthesis. doi:10.1055/s-1987-27831

  135. Nadi GC, Singh MS, Ila H, Junjappa H (2012) Highly regioselective one-pot, three-component synthesis of 1-aryl-3,4-substituted/annulated-5-(cycloamino)/(alkylamino) pyrazoles from \(\beta \)-oxodithioesters. Eur J Org Chem 5:967–974. doi:10.1002/ejoc.201101397

    Google Scholar 

  136. Elnagdi MH, Elmoghyar MRH, Elgemeie GEH (1987) Chemistry of pyrazolopyrimidines. Adv Heterocycl Chem 41:319–376. doi:10.1016/s0065-2725(08)60164-6

    CAS  Google Scholar 

  137. Elfaham HA, Abdel Galil FM, Ibrahim YR, Elnagdi MH (1983) Activated nitriles in heterocyclic synthesis. A novel synthesis of pyrazolo[1,5-\(a\)]pyrimidines and pyrano[2,3-\(c\)]-pyrazoles. J Heterocycl Chem 20:667–670. doi:10.1002/jhet.5570200331

    Google Scholar 

  138. Mourad AE, Sadek KU, Shehata N, Elnagdi MH (1984) Pyrimidine derivatives and related compounds: synthesis of new 3-(2,3-dimethyl-5-oxo-1-phenylpyrazolin-4-yl)azopyrazolo-[1,5-\(a\)]pyrimidines. Arch Pharm 317:241–245. doi:10.1002/ardf.19843170310

    CAS  Google Scholar 

  139. Sadek KU, Selim MA, Elmaghraby MA (1985) Reactions with heterocyclic amidines: synthesis of several new pyrazolo[1,5-\(a\)]pyrimidines and pyrazolo[1,5-\(c\)]-as-triazines. J Chem Eng Data 30:514–515. doi:10.1021/je00042a048

    CAS  Google Scholar 

  140. Anwar HF, Fleita DH, Kolshorn H, Meier H, Elnagid MH (2006) \(2H\)-Pyrazol-3-ylamines as precursors for the synthesis of polyfunctionally substituted pyrazolo[1,5-\(a\)]pyrimidines. Arkivoc XV:133–141

    Google Scholar 

  141. Chebanov VA, Gura KA, Desenko SM (2009) Aminoazoles as key reagents in multicomponent heterocyclizations. Top Heterocycl Chem 23:41–84. doi:10.1007/17081-2009-21

    Google Scholar 

  142. Rahmati A (2012) One-pot synthesis of 2-alkyl-7-amino-5-aryl-pyrazolo[1,5-\(a\)]pyrimidine-6-carbonitriles via a domino three-component condensation reaction. Comptes Rend Chim 15:647–652. doi:10.1016/j.crci.2012.06.006

    CAS  Google Scholar 

  143. Muravyova EA, Desenko SM, Rudenko RV, Shishkina SV, Shishkina OV, Sen’ko YV, Vashchenko EV, Chebanov VA (2011) Switchable selectivity in multicomponent hetero-cyclizations of acetoacetamides, aldehydes, and 3-amino-1,2,4-triazoles/5-aminopyrazoles. Tetrahedron 67:9389–9400. doi:10.1016/j.tet.2011.09.138

    CAS  Google Scholar 

  144. Chebanov VA, Sakhno YI, Desenko SM, Chernenko VN, Musatov VI, Shishkina SV, Shishkin OV, Kappe CO (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242. doi:10.1016/j.tet.2006.11.048

    CAS  Google Scholar 

  145. Rahmati A (2010) Synthesis of 4-aryl-3-methyl-6-oxo-4,5,6,7-tetrahydro-\(2H\)-pyrazolo- [3,4-b]pyridine-5-carbonitrile via a one-pot, three component reaction. Tetrahedron Lett 51:2967–2970. doi:10.1016/j.tetlet.2010.03.109

    CAS  Google Scholar 

  146. Rahmati A, Khalesi Z (2012) Catalyst free synthesis of fused pyrido[2,3-\(d\)]pyrimidines and pyrazolo[3,4-\(b\)]pyridines in water. Chin Chem Lett 23:1149–1152. doi:10.1016/j.cclet.2012.08.009

    CAS  Google Scholar 

  147. El-Borai MA, Rizk HF, Abd Aal MF, El-Deeb IY (2012) Synthesis of pyrazolo- [3,4-\(b\)]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activity. Eur J Med Chem 48:92–96. doi:10.1016/j.ejmech.2011.11.038

    CAS  PubMed  Google Scholar 

  148. Aggarwal R, Kumar V, Bansal A, Sanz D (2012) Multi-component solvent-free versus stepwise solvent mediated reactions: Regiospecific formation of 6-trifluoromethyl and 4-trifluoromethyl-\(1H\)-pyrazolo[3,4-\(b\)]pyridines. J Flourine Chem 140:31–37. doi:10.1016/j.fluchem.2012.04.007

    CAS  Google Scholar 

  149. Fan X, Wang X, Zhang X, Li X, Qu G (2008) A simple and efficient preparation of pyrazolo[3,4-\(b\)]pyridine derivatives through an unexpected reaction of cyanothioacetamide under microwave irradiation. Heteroatom Chem 19:694–699. doi:10.1002/hc.20497

    CAS  Google Scholar 

  150. Erkkila A, Majander I, Pinko PM (2007) Iminium catalysis. Chem Rev 107:5416–5470. doi:10.1021/cr068388p

    PubMed  Google Scholar 

  151. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A, 5th edn. Springer, New York

    Google Scholar 

  152. mMuller TJJ (2011) Multi-component reactions in heterocyclic chemistry. Adv Exp Med Biol 699:31–73. doi:10.1007/978-1-4419-7270-52

    Google Scholar 

  153. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A, 5th edn. Springer, New York

    Google Scholar 

  154. Quiroga J, Mejia D, Insuasty B, Abonia R, Nogueras M, Sanchez A, Cobo J, Low JN (2001) Regioselective synthesis of 4,7,8,9-tetrahydro-\(2H\)-pyrazolo[3,4-\(b\)]quinolin-5(\(6H\))-ones. Mechanism and structural analysis. Tetrahedron 57:6947–6949. doi:10.1016/s0040-4020(01)00649-4

    CAS  Google Scholar 

  155. Chebanov VA, Aaraev VF, Desenko SM, Chermenko VN, Shishkina SV, Shishkin OV, Kobzar KM, Kappe CO (2007) One-pot, multicomponent route to pyrazoloquinolizinones. Org Lett 9:1691–1693. doi:10.1021/o1070411

    CAS  PubMed  Google Scholar 

  156. Chebanov VA, Saraev VF, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) Tuning of chemo- and regioselectivities in multicomponent condensation of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118. doi:10.1021/jo800825c

    CAS  PubMed  Google Scholar 

  157. Lipson VV, Svetlichnaya NV, Borodina VV, Shirobokova MG, Shishkina SV, Shishkin OV, Musatov VI (2010) Cascade cyclization of 3(5)-aminopyrazoles with aromatic aldehydes and cyclohexanediones. Russ J Org Chem 46:1388–1398. doi:10.1134/S1070428010090216

    CAS  Google Scholar 

  158. Nikpassand M, Mamaghani M, Shirini F, Tabatabaeian K (2010) A convenient ultrasound-promoted regioselective synthesis of fused polycyclic 4-aryl-3-methyl-4,7-dihydro-\(1H\)-pyrazolo[3,4-\(b\)]pyridines. Ultrason Sonochem 17:301–305. doi:10.1016/j.ultsonch.2009.08.001

    CAS  PubMed  Google Scholar 

  159. Wang S, Ma N, Ge Zhang, Shi F, Jiang Bo LuH, Gao Y, Tu S (2010) An efficient and clean synthesis of indeno[1,2-\(b\)]pyrazolo[4,3-\(e\)]pyridine-5(\(1H\))-one derivatives under microwave irradiation in water. J Heterocycl Chem 47:1283–1286. doi:10.1002/jhet.468

    CAS  Google Scholar 

  160. Wang S-L, Wang Y-P, Liu B-H, Xu X-H, Wang B, Jiang SJ-T (2011) Microwave-assisted chemoselective reaction: a divergent synthesis of pyrazolopyridine derivatives with different substituted patterns. Tetrahedron 67:9417–9425. doi:10.1016/j.tet.2011.09.081

    CAS  Google Scholar 

  161. Quiroga J, Trilleras J, Pantoja D, Abonia R, Insuasty B, Nogueras M, Cobo J (2010) Microwave-assisted synthesis of pyrazolo[3,4-\(b\)]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic \(\beta \)-diketones. Tetrahedron Lett 51:4717–4719. doi:10.1016/j.tetlet.2020.07.009

  162. Jiang B, Liu YP, Tu SJ (2011) Facile three-component synthesis of macrocyclane-fused pyrazolo[3,4-\(b\)]pyridine derivatives. Eur J Org Chem 3026–3035. doi:10.1002/ejoc.201100127

  163. Chebanov VA, Saraev VE, Shishkina SV, Shishkin OV, Musatov VI, Desenko SM (2012) Controlled switching of multicomponent heterocyclizations of 5-amino-N-arylpyrazole-4-carboxamides, 1,3-cyclohexanediones, and aldehydes. Eur J Org Chem 5515–5524. doi:10.1002/ejoc.201200669

  164. Sadek KU, Mekheimer RA, Mohamed TM, Moustafa MS, Elnagdi MH (2012) Regioselectivity in the multicomponent reaction of 5-aminopyrazoles, cyclic 1,3-diketones and dimethylformamide dimethylacetal under controlled microwave heating. Beilst J Org Chem 8:18–24. doi:10.3762/bjoc.8.3

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kuwait University Research Administration for financial support of project SC12/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Usef Sadek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnagdi, M.H., Moustafa, M.S., Al-Mousawi, S.M. et al. Recent developments in utility of green multi-component reactions for the efficient synthesis of polysubstituted pyrans, thiopyrans, pyridines, and pyrazoles. Mol Divers 19, 625–651 (2015). https://doi.org/10.1007/s11030-015-9594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9594-2

Keywords

Navigation