Skip to main content
Log in

An efficient three-component synthesis of highly functionalized tetrahydroacenaphtho[1,2-\(b\)]indolone derivatives catalyzed by L-proline

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient and diastereoselective synthetic procedure for highly functionalized tetrahydroacenaphtho[1,2-\(b\)]indolone derivatives was successfully developed by the three-component reaction of acenaphthequinone, enaminones, and barbituric acid in the presence of a catalytic amount of L-proline. This method has the advantages of convenient operation, excellent yields, mild reaction conditions, and environmental friendliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reaction. Chem Rev 112:3083–3135. doi:10.1021/cr100233r

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tietze LF, Brasche G, Gericke K (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136. doi:10.1021/cr950027e

    Article  PubMed  CAS  Google Scholar 

  4. Dömling A (2006) Recent develpoments in isocyanide based mnlticomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  5. Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44:1602–1634. doi:10.1002/anie.200460548

    Article  Google Scholar 

  6. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. doi:10.1002/1521-3773(10000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U

  7. Li M, Li T, Zhao K, Wang M, Wen R (2013) Application of functionalized N,S-ketene acetals-microwave-assisted three-component domino reaction for rapid direct acess to imidazo[1,2-a]pyridines. Chin J Chem 31:1033–1038. doi:10.1002/cjoc.201300252

    Article  CAS  Google Scholar 

  8. Liu Z, Zhang L, Sun J, Yang C (2014) Diastereoselective synthesis of functionalized tetrahydropyrimidin-2-thiones via \(\text{ ZnCl }_{2}\) promoted one-pot reactions. Chin J Chem 32:172–178. doi: 10.1002/cjoc.201300577

    Article  CAS  Google Scholar 

  9. Gamage SA, Tepsiri N, Wilairat P, Wojcik SJ, Figgitt DP, Ralph RK, Denny WA (1994) Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug—resistant strain of the malaria parasite plasmodium falciparum. J Med Chem 37:1486–1494. doi:10.1021/jm00036a014

    Article  PubMed  CAS  Google Scholar 

  10. Eren G, Unlu S, Nunez MT, Labeaga L, Ledo F, Entrena A, Lu EB, Costantino G, Sahin MF (2010) Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg Med Chem 18:6367–6376. doi:10.1016/j.bmc.2010.07.009

    Article  PubMed  CAS  Google Scholar 

  11. Michaudel Q, Thevenet D, Baran PS (2012) Intermolecular Ritter-type C–H amination of unactivated \(\text{ sp }^{3}\) carbons. J Am Chem Soc 134:2547–2550. doi: 10.1021/ja212020b

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Iglesias A, Alvarez R, Lea AR, Muniz K (2012) Palladium-catalyzed intermolecular \(\text{ C }(\text{ sp }^{3})\)–H amidation. Angew Chem Int Ed 51:2225–2228. doi: 10.1002/anie.201108351

    Article  CAS  Google Scholar 

  13. Fan R, Li W, Pu D, Zhang L (2009) Transition-metal-free intermolecular amination of \(\text{ sp }^{3}\) C–H bonds with sulfonamides. Org Lett 11:1425–1428. doi: 10.1021/ol90009of

    Article  PubMed  CAS  Google Scholar 

  14. Davies HML, Long MS (2005) Recent advances in catalytic intramolecular C–H aminations. Angew Chem Int Ed 44:3518–3520. doi:10.1002/anie.200500554

    Article  CAS  Google Scholar 

  15. Davies HML (2006) Recent advances in catalytic enantioselective intermolecular C–H functionalization. Angew Chem Int Ed 45:6422–6425. doi:10.1022/anie.200601814

    Article  CAS  Google Scholar 

  16. Fuchs JR, Funk RL (2005) Indol-2-one intermediates: mechanistic evidence and synthetic utility. Total syntheses of (\(\pm \))-Flustramines A and C. Org Lett 7:677–680. doi:10.1021/ol047532v

  17. Chen WL, Cai YF, Fu X, Liu XH, Liu LL, Feng XM (2011) Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes. Org Lett 13:4910–4913. doi:10.1021/ol2019949

  18. Thirumurugan P, Perumal PT (2009) \(\text{ InCl }_{3}\) mediated one-pot synthesis of indol-3-yl pyridine and \(2,2^{\prime } \)-bipyridine derivatives through multi-component reaction. Tetrahedron 65:7620–7629. doi:10.1016/j.tet.2009.06.097

  19. Shi F, Xing GJ, Zhu RY, Tan W, Tu SJ (2013) A catalytic asymmetric isatin-involved Povarov reaction: diastereo- and enantioselective construction of spiro[indolin-3,2\({\prime }\)-quinoline] scaffold. Org Lett 15:128–131. doi:10.1021/ol303154k

  20. Li C, Guo F, Xu K, Zhang S, Hu Y, Zha Z, Wang Z (2014) Copper-catalyzed enantioselective Friedel–Crafts allylation of pyrrole with isatins. Org Lett 16:3192–3195. doi:10.1021/ol501086q

    Article  PubMed  CAS  Google Scholar 

  21. Zi Y, Cai ZJ, Wang SY, Ji SJ (2014) Synthesis of isatins by \(\text{ I }_{2}\)/TBHP mediated oxidation of indoles. Org Lett 16:3094–3097. doi: 10.1021/ol501203q

    Article  PubMed  CAS  Google Scholar 

  22. Hao WJ, Wang SY, Ji SJ (2013) Iodine-catalyzed cascade formal [3+3] cycloaddition reaction of indolyl alcohol derivatives with enaminones: construction of functionalized spirodihydrocarbolines. ACS Catal 3:2501–2504. doi:10.1021/cs400703u

    Article  CAS  Google Scholar 

  23. Jiang B, Li QY, Zhang H, Tu SJ, Pindi S, Li G (2012) Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b, e][1,4]diazepin-1-ones. Org Lett 14:700–703. doi:10.1021/ol203166c

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Jiang B, Li QY, Tu SJ, Li G (2012) Three-component domino reactions for selective formation of indeno[1,2-b]indole derivatives. Org Lett 14:5210–5213. doi:10.1021/ol3023038

    Article  PubMed  CAS  Google Scholar 

  25. Fu LP, Shi QQ, Shi F, Jiang B, Tu SJ (2013) Three-component domino reactions for regioselective formation of bis-indole derivatives. ACS Comb Sci 15:135–140. doi:10.1021/co3001428

    Article  PubMed  Google Scholar 

  26. List B, Lerner RA, Barbas CF III (2000) Proline-catalyzed direct asymmetric Aldol reactions. J Am Chem Soc 122:2395–2396. doi:10.1021/ja994280y

    Article  CAS  Google Scholar 

  27. List B (2004) Enamine catalyzed is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc Chem Res 37:548–557. doi:10.1021/ar0300571

    Article  PubMed  CAS  Google Scholar 

  28. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107:5471–5569. doi:10.1021/cr0684016

    Article  PubMed  CAS  Google Scholar 

  29. Ramachary DB, Chowdari NS, Barbas CF III (2003) Organocatalytic asymmetric Domino Knoevenagel/Diels–Alder reactions: a bioorganic approach to the diastereospecific and enantioselective construction of highly substituted spiro[5,5]undecane-1,5,9-triones. Angew Chem 115:4365–4369. doi:10.1002/ange.200351916

    Article  Google Scholar 

  30. Notz W, Tanaka F, Barbas CF III (2004) Enamine-based organocatalysis with proline and diamines: the developments of direct catalytic asymmetric Aldol, Mannich, Michael, and Diels–Alder reactions. Acc Chem Res 37:580–591. doi:10.1021/ar0300468

    Article  PubMed  CAS  Google Scholar 

  31. Jiang H, Mai R, Cao H, Zhu Q, Liu X (2009) L-Proline-catalyzed synthesis of highly functionalized multisubstituted 1,4-dihydropyridines. Org Biomol Chem 7:4943–4953. doi:10.1039/B914659H

  32. Rajesh SM, Bala BD, Perumal S, Menéndez JC (2011) L-Proline-catalyzed sequential four-component “on water” protocol for the synthesis of structurally complex heterocyclic ortho-quinones. Green Chem 13:3248–3254. doi:10.1039/C1GC15794A

    Article  CAS  Google Scholar 

  33. Abdolmohammadi S, Balalaie S (2007) Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromane derivatives in aqueous media. Tetrahedron Lett 48:3299–3303. doi:10.1016/j.tetlet.2007.02.135

    Article  CAS  Google Scholar 

  34. Kumar A, Maurya RA (2007) Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron 63:1946–1952. doi:10.1016/j.tet.2006.12.074

    Article  CAS  Google Scholar 

  35. Shi CL, Shi DQ, Kim SH, Huang ZB, Ji SJ, Ji M (2008) A novel and efficient one-pot synthesis of furo[3’,4’:5,6]pyrido[2,3-\(c\)]pyrazole derivatives using organocatalysts. Tetrahedron 64:2425–2432. doi: 10.1016/j.tet.2007.12.053

    Article  CAS  Google Scholar 

  36. Shi CL, Chen H, Li Y, Shi DQ, Ji M (2008) A three-component synthesis of N-substituted quinoline-3-carbonitrile derivatives catalyzed by L-proline. J Chem Res 32:534–537. doi:10.3184/030823408X347567

  37. Shi CL, Shi DQ (2011) Green synthesis of chromen-2-one derivatives catalyzed by L-proline. J Chem Res 35:585–586. doi:10.3184/174751911X13173059031452

    Article  CAS  Google Scholar 

  38. Wang HY, Li LL, Lin W, Huang ZB, Shi DQ (2013) Progress in application of L-proline in catalyzing the synthesis of heterocyclic compounds. Chin J Org Chem 33:1616–1627. doi:10.6023/cjoc201210033

    Article  CAS  Google Scholar 

  39. Kaur P, Pindi S, Wever W, Rajale T, Li G (2010) Asymmetric catalytic Strecker reaction of \(N\)-phosphonyl imines with \(\text{ Et }_{2}\)AlCN using amino alcohols and BINOLs as catalyst. Chem Commun 46:4330–4332. doi: 10.1039/C0CC00287A

    Article  CAS  Google Scholar 

  40. Kaur P, Pindi S, Wever W, Rajale T, Li G (2010) Asymmetric catalytic \(N\)-phosphonyl imine chemistry: the use of primary free amino acids and \(\text{ Et }_{2}\)AlCN for asymmetric Strecker reaction. J Org Chem 75:5244–5250. doi: 10.1021/jo100865q

    Article  Google Scholar 

  41. Kaur P, Wever W, Pindi S, Milles R, Gu P, Shi M, Li G (2011) The GAP chemistry for chiral \(N\)-phosphonyl imine-based Strecker reaction. Green Chem 13:1288–1292. doi: 10.1039/C1GC15029D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20131160), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 11KJB150014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Qing Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Feng, X., Liu, XC. et al. An efficient three-component synthesis of highly functionalized tetrahydroacenaphtho[1,2-\(b\)]indolone derivatives catalyzed by L-proline. Mol Divers 18, 727–736 (2014). https://doi.org/10.1007/s11030-014-9544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9544-4

Keywords

Navigation