Skip to main content
Log in

Moisture Sorption of Epoxy Composites Reinforced with Aligned and Notched Triangular Bars

  • Published:
Mechanics of Composite Materials Aims and scope

Moisture diffusion in acid anhydride-cured epoxy matrices reinforced with aligned and notched triangular bars has been investigated. The reinforcing bars were first treated with molded and cured vinyl ester resin before their manual assembling. Gravimetric experiments were performed on epoxy composites fully immersed in water at 80°C for 1200 h. Weight uptake curves showed that the composites had suffered limited material degradation after an initial stage of moisture sorption; another sorption stage was observed after this degradation phase. Based on the initial sorption stage, the moisture diffusion behavior in composites is found to be independent of the orientation and alignment of reinforcing bars. This result is confirmed by transient 3D finite-element simulations. The numerical results are in close agreement with experimental data for the initial sorption stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. D. Moggridge, N. K. Lape, C. Yang, and E. L. Cussler, “Barrier films using flakes and reactive additives,” Prog. Org. Coat., 46, No. 4, 231-240 (2003).

    Article  Google Scholar 

  2. N. K. Lape, E. Nuxoll, E. L. Cussler, “Polydisperse flakes in barrier films,” J. Membr. Sci., 236, No. 1-2, 29-37 (2004).

    Article  Google Scholar 

  3. X. Chen and T. Papathanasiou, “Barrier properties of flake-filled membranes: review and numerical evaluation,” J. Plast. Film. Sheet., 23, No. 4, 319-346 (2007).

    Article  Google Scholar 

  4. E. L. Cussler, “Diffusion barriers,” Diffusion Fundamentals, 6, 72.1-72.12 (2007).

    Google Scholar 

  5. D. M. Eitzmann, R. Melkote, and E. L. Cussler, “Barrier membranes with tipped impermeable flakes,” AIChEJ, 42, No. 1, 2-9 (1996).

    Article  Google Scholar 

  6. Y. Ly and Y. Cheng, “Diffusion in heterogeneous media containing impermeable domains arranged in parallel arrays of variable orientation,” J. Membr. Sci., 133, No. 2, 207-215 (1997).

    Article  Google Scholar 

  7. J. D. White and E. L. Cussler, “Anisotropic transport in water swollen flake-filled membranes,” J. Membr. Sci., 278, No. 1-2, 225-231 (2006).

    Article  Google Scholar 

  8. B. B. Pajarito, M. Kubouchi, T. Sakai, and S. Aoki, “Effective diffusion in flake-polymer composites with accelerated interphase transport,” J. Soc. Mater. Sci. Jpn, 61, 860-866 (2012).

    Article  Google Scholar 

  9. B. B. Pajarito, M. Kubouchi, and S. Aoki, “Investigation of water diffusion in triangular bar-reinforced composites,” Adv. Compos. Lett., 21, No. 6, 137-144 (2012).

    Google Scholar 

  10. B. B. Pajarito, M. Kubouchi, and S. Aoki, “Modeling anisotropic water transport in polymer composite reinforced with aligned triangular bars,” Bull. Mater. Sci., Advance online publication, http://www.ias.ac.in/matersci/forth.html.

  11. B. B. Pajarito and M. Kubouchi, “Kinetic model study of moisture sorption-desorption-resorption in triangular-shaped vinyl ester filler/epoxy composites,” J. Mater. Sci., 49, No. 2, 886-896 (2014).

    Article  Google Scholar 

  12. C. Geuzaine and J. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng., 79, No. 11, 1309-1331 (2009).

    Article  Google Scholar 

  13. A. R. Berens and H. B. Hopfenberg, “Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters,” Polymer, 19, No. 5, 489-496 (1978).

    Article  Google Scholar 

  14. P. Dular, C. Geuzaine, A. Genon, and W. Legros, “An evolutive software environment for teaching finite element methods in electromagnetism,” IEEE T. Magn., 35, No. 3, 1682-1685 (1999).

    Article  Google Scholar 

  15. Y. W. Kwon and H. Bang, The Finite Element Method Using Matlab, CRC Press, Inc., Boca Raton, Florida (2000).

    Google Scholar 

  16. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975).

    Google Scholar 

  17. C. Yang, W. Smyrl, and E. L. Cussler, “Flake alignment in composite coatings,” J. Membr. Sci., 231, No. 1-2, 1-12 (2004).

    Article  Google Scholar 

  18. W. Falla, M. Mulski, and E. L. Cussler, “Estimating diffusion through flake-filled membranes,” J. Membr. Sci., 119, No. 1, 129-138 (1996).

    Article  Google Scholar 

  19. J. DeRocher, B. Gettelfinger, J. Wang, E. Nuxoll, and E. L. Cussler, “Barrier membranes with different sizes of aligned flakes,” J. Membr. Sci., 254, No. 1-2, 21-30 (2005).

    Article  Google Scholar 

  20. E. L. Cussler, S. Hughes, W. Ward, and R. Aris, “Barrier membranes,” J. Membr. Sci., 38, No. 2, 161-174 (1988).

    Article  Google Scholar 

  21. B. B. Pajarito and M. Kubouchi, “Flake-filled polymers for corrosion protection,” J. Chem. Eng. Jpn., 46, No. 1, 18-26 (2013).

    Article  Google Scholar 

  22. V. Alvarez, A. Vazquez, and O. de la Osa, “Cyclic water absorption behaviour of glass-vinyl ester and glass-epoxy composites,” J. Compos. Mater., 41, No. 10, 1275-1289 (2007).

    Article  Google Scholar 

  23. B. B. Pajarito, M. Kubouchi, H. Tomita, and S. Aoki, “Microstructural dependency of diffusion in glass flake-reinforced vinyl ester resins,” AJChE, 12, No. 1, 11-19 (2012).

    Google Scholar 

  24. B. B. Pajarito, M. Kubouchi, H. Tomita, and T. Sakai, “Absorption and wet retention of flexural properties of E-glass flake/epoxy composites under corrosive environment,” Mater. Sci. Tech. Jpn., 49, No. 1, 32-38 (2012).

    Google Scholar 

  25. D. A. Bond and P. A. Smith, “Modeling the transport of low-molecular-weight penetrants within polymer matrix composites,” Appl. Mech. Rev., 59, 249-268 (2006).

    Article  Google Scholar 

  26. Y. J. Weitsman and Y. J. Guo, “A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites,” Compos. Sci. Tech., 62, 889-908 (2002).

    Article  Google Scholar 

  27. A. L. Pomerantsev, “Phenomenological modeling of anomalous diffusion in polymers”, J. Appl. Polym. Sci., 96, 1102-1114 (2005).

    Article  Google Scholar 

  28. Abastari, T. Sakai, H. Sembokuya, M. Kubouchi, and K. Tsuda, “The reciprocal influence between ion transport and degradation of PA66 in acid solution,” Polym. Degrad. Stabil., 91, 2595-2604 (2006).

    Article  Google Scholar 

  29. Abastari, T. Sakai, H. Sembokuya, M. Kubouchi, and K. Tsuda, “Study on permeation behavior and chemical degradation of PA 66 in acid solution,” Polym. Degrad. Stabil., 92, 379-388 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Hitachi Scholarship Foundation for the financial support. The authors would also like to express their deepest gratitude to Dr. Saiko Aoki for the procurement of materials and the experimental setup, and to Dr. Hideki Sembokuya for the fabrication of metallic molds for curing and forming notched triangular vinyl ester bars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Pajarito.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 6, pp. 1101-1118 , November-December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajarito, B.B., Kubouchi, M. Moisture Sorption of Epoxy Composites Reinforced with Aligned and Notched Triangular Bars. Mech Compos Mater 50, 789–800 (2015). https://doi.org/10.1007/s11029-015-9468-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9468-9

Keywords

Navigation