Skip to main content
Log in

A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States

Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The quantification of fossil-fuel-related emissions of carbon dioxide to the atmosphere is necessary in order to accurately represent carbon cycle fluxes and to understand and project the details of the global carbon cycle. In addition, the monitoring, reporting, and verification (MRV) of carbon dioxide emissions is necessary for the success of international agreements to reduce emissions. However, existing fossil-fuel carbon dioxide (FFCO2) emissions inventories vary in terms of the data and methods used to estimate and distribute FFCO2. This paper compares how the approaches used to create spatially explicit FFCO2 emissions inventories affect the spatial distribution of emissions estimates and the magnitude of emissions estimates in specific locales. Five spatially explicit FFCO2 emission inventories were compared: Carbon Dioxide Information and Analysis Center (CDIAC), Emission Database for Global Atmospheric Research (EDGAR), Fossil Fuel Data Assimilation System (FFDAS), Open-source Data Inventory for Anthropogenic CO2 (ODIAC), and Vulcan. The effects of using specific data and approaches in the creation of spatially explicit FFCO2 emissions inventories, and the effect of resolution on data representation are analyzed using graphical, numerical, and cartographic approaches. We examined the effect of using top-down versus bottom-up approaches, nightlights versus population proxies, and the inclusion of large point sources. The results indicate that the approach used to distribute emissions in space creates distinct patterns in the distribution of emissions estimates and hence in the estimates of emissions in specific locations. The different datasets serve different purposes but collectively show the key role of large point sources and urban centers and the strong relationship between scale and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Andres RJ, Marland G, Fung I, Matthews E (1996) A 1° by 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochem Cycles 10:419–429. doi:10.1029/96GB01523

  • Andres RJ, Gregg JS, Losey L, Marland G, Boden TA (2011) Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B 63:309–327. doi:10.1111/j.1600-0889.2011.00530.x

    Article  Google Scholar 

  • Andres RJ, Boden TA, Bréon F et al (2012) A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosci Discuss 9:1299–1376. doi:10.5194/bgd-9-1299-2012

    Article  Google Scholar 

  • Asefi-Najafabady S, Rayner PJ, Gurney KR et al (2014) A multiyear, global gridded fossil fuel CO2 emission data product: evaluation and analysis of results: global fossil fuel CO2 emissions. J Geophys Res Atmos 119:10213–10231. doi:10.1002/2013JD021296

    Article  Google Scholar 

  • Blasing TJ, Marland G, Broniak C (2004) Estimates of annual fossil-fuel CO2 emitted for each state in the U.S.A. and the District of Columbia for each year from 1960 through 2001. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A., DOI:10.3334/CDIAC/00003

  • Bovensmann H, Buchwitz M, Burrows JP, Reuter M, Krings T, Gerilowski K, Schneising O, Heymann J, Tretner A, Erzinger J (2010) A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos Meas Tech 3:781–811

    Article  Google Scholar 

  • C40 Cities (2016) C40 Cities Climate Leadership Group. http://www.C40.org. Cited Feb 15 2016.

  • Cao C, Lam NS (1997) Understanding the scale and resolution effects in remote sensing. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. CRC/Lewis Publishers, Boca Raton

    Google Scholar 

  • Compact of Mayors (2016) UN Secretary-General’s Special Envoy for Cities and Climate Change. http://www.compactofmayors.org. Cited Feb 15 2016.

  • Dai J, Rocke DM (2000) A GIS-based approach to spatial allocation of area source solvent emissions. Environ Model Softw 15:293–302. doi:10.1016/S1364-8152(00)00004-9

    Article  Google Scholar 

  • EDGAR (2016) EDGARv4 methodology. Available at http://edgar.jrc.ec.europa.eu/methodology.php. Cited 15 Jan 2016

  • Erickson P, Tempest K (2014) Advancing climate ambition: How city-scale actions can contribute to global climate goals. In: Davis M (ed) SEI Working Paper No. 2014-06. Stockholm Environment Institute

  • Goodchild MF (2001) Models of scale and scales of modelling. In: Tate NJ, Atkinson PM (eds) Modelling scale in geographical information science. Wiley, West Sussex

    Google Scholar 

  • Goodchild MF (2011) Scale in GIS: an overview. Geomorphology 130:5–9. doi:10.1016/j.geomorph.2010.10.004

    Article  Google Scholar 

  • Gregg JS, Andres RJ (2008) A method for estimating the temporal and spatial patterns of carbon dioxide emissions from national fossil-fuel consumption. Tellus B 60:1–10. doi:10.1111/j.1600-­‐0889.2007.00319.x

    Article  Google Scholar 

  • Gurney KR, Mendoza DL, Zhou Y et al (2009) High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ Sci Technol 43:5535–5541. doi:10.1021/es900806c

    Article  Google Scholar 

  • Gurney KR, Mendoza D, Geethakumar S et al (n.d.) Vulcan science methods documentation 2.0. Available at http://vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf. Cited 15 Feb 2013

  • Hartmann DL, Tank AMGT, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  • JPL (2015) NASA megacities carbon project, Jet Propulsion Laboratory, California Institute of Technology, https://megacities.jpl.nasa.gov/portal

  • Marland G, Brenkert A, Olivier J (1999) CO2 from fossil fuel burning: a comparison of ORNL and EDGAR estimates of national emissions. Environ Sci Policy 2:265–273. doi:10.1016/S1462-9011(99)00018-0

    Article  Google Scholar 

  • Oda T, Maksyutov S (2011) A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos Chem Phys 11:43–556. doi:10.5194/acp-11-543-2011

    Article  Google Scholar 

  • Olivier JG, Van Aardenne JA, Dentener FJ et al (2005) Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ Sci 2:81–99. doi:10.1080/15693430500400345

    Article  Google Scholar 

  • Peylin P, Houweling S, Krol MC et al (2011) Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison. Atmos Chem Phys 11:6607–6622. doi:10.5194/acp-11-6607-2011

    Article  Google Scholar 

  • Rayner PJ, Raupach MR, Paget M et al (2010) A new global gridded data set of CO2 emissions from fossil fuel combustion: methodology and evaluation. J Geophys Res 115(D19):1–11. doi:10.1029/2009JD013439

    Article  Google Scholar 

  • Singer AM, Branham M, Hutchins MG et al (2014) The role of CO2 emissions from large point sources in emissions totals, responsibility, and policy. Environ Sci Policy 4:190–200. doi:10.1016/j.envsci.2014.08.00

    Article  Google Scholar 

  • Vogel FR, Thiruchittampalam B, Theloke J, Kretschmer R, Gerbig C, Hammer S, Levin I (2013) Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO2 observations? Tellus B 2013(65):18681. doi:10.3402/tellusb.v65i).18681

    Article  Google Scholar 

  • Wang R, Tao S, Ciais P et al (2012) High resolution mapping of combustion processes and implications for CO2 emissions. Atmos Chem Phys Discuss 12:21211–21239. doi:10.5194/acpd-12-21211-2012

  • Wheeler D, Ummel, K (2008) Calculating CARMA: global estimation of CO2 emissions from the power sector, Working Paper 145. Center for Global Development, 1–37

  • Woodard D, Branham M, Buckingham G et al (2014) A spatial uncertainty metric for anthropogenic CO2 emissions. Greenh Gas Meas Manag 4:139–160. doi:10.1080/20430779.2014.1000793

    Article  Google Scholar 

Download references

Acknowledgments

The data used or referenced in this paper are available at the following locations:

CDIAC gridded FFCO2 emissions distribution can be found at http://cdiac.ornl.gov.

EDGAR gridded FFCO2 emissions distribution can be found at http://edgar.jrc.ec.europa.eu.

FFDAS gridded FFCO2 emissions distribution can be requested at http://gurney.faculty.asu.edu/research/ffdas.php.

ODIAC gridded FFCO2 emissions distribution can be requested at http://odiac.org.

Vulcan data can be found at http://vulcan.project.asu.edu/research.php.

CARMA data can be found at http://carma.org/.

eGRID LPS data can be found at http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html.

IEA statistics can be found at http://www.iea.org/statistics/.

DOE/EIA statistics can be found at: http://www.eia.gov/.

U.N. statistics can be found at: http://unstats.un.org/unsd/energy/.

BP statistics can be found at http://www.bp.com/en/global/corporate/about-bp/energy-economics.html.

Funding for this research comes from the Carbon Monitoring System Program (NNH11ZDA001N-CMS) of the U.S. National Aeronautics and Space Administration.

We thank Dr. Bob Andres, Dr. Kevin Gurney, and Dr. Tom Oda for their technical and logistical support and assistance in navigating these data. The comments of two anonymous reviewers have helped us to tighten up the text and improve its readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya G. Hutchins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 194 kb)

ESM 3

(DOCX 168 kb)

ESM 4

(DOCX 172 kb)

ESM 5

(DOCX 120 kb)

ESM 6

(DOCX 196 kb)

ESM 7

(DOCX 414 kb)

ESM 8

(DOCX 73 kb)

ESM 9

(DOCX 289 kb)

ESM 10

(DOCX 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchins, M.G., Colby, J.D., Marland, G. et al. A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States. Mitig Adapt Strateg Glob Change 22, 947–972 (2017). https://doi.org/10.1007/s11027-016-9709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-016-9709-9

Keywords

Navigation