Skip to main content

Advertisement

Log in

Sustainable biofuels from algae

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

There is currently great interest in microalgae as sources of renewable energy and biofuels. Many algae species have a high lipid content and can be grown on non-arable land using alternate water sources such as seawater. This paper discusses in detail the issue of sustainability of commercial-scale microalgae production of biofuels with particular focus on land, water, nutrients (N and P) and CO2 requirements and highlights some of the key issues in the very large scale culture of microalgae which is required for biofuels. The use of genetically modified algae is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806

    Google Scholar 

  • Ackom E, Mabee W, Saddler J (2010) Backgrounder: major environmental criteria for biofuel sustainability. IEA Task 39 Report T38-PR4, pp. 1–39

  • Agha KR, Abughres SM, Ramadan AM (2004) Maintenance strategy for a salt gradient solar pond coupled with an evaporation pond. Sol Energy 77:95–104

    Google Scholar 

  • Akbarzadeh A, Johnson P, Singh R (2009) Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas. Sol Energy 83:1345–1359

    Google Scholar 

  • Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Process 87:179–186

    Google Scholar 

  • Amin S (2009) Review of biofuel oil and gas production processes from microalgae. Energy Convers Manage 50:1834–1840

    Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    Google Scholar 

  • Barclay B, Nagle N, Terry K & Roessler P (1985) Collecting and screening microalgae from shallow, inland saline habitats. SERI/CP-23-2700, pp 52–68

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Google Scholar 

  • Béchet Q, Shilton A, Fringer OB, Munoz R, Guieysse B (2010) Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol 44:2197–2203

    Google Scholar 

  • Becker EW, Venkataraman LV (1982) Biotechnology and exploitation of algae—The Indian approach. German Agency for Tech. Co-op, Eschborn

    Google Scholar 

  • Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enzyme Microb Technol 1:83–90

    Google Scholar 

  • Benemann J (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:475–479

    Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US Department of Energy, Pittburgh, pp 1–201

    Google Scholar 

  • Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar Ecol Prog Ser 225:139–146

    Google Scholar 

  • Bonet J, Costa J, Sire R, Renaume J-M, Plesu AE, Plesu V, Bozga G (2009) Revalorization of glycerol: comestible oil from biodiesel synthesis. Food Bioprod Process 87:171–178

    Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borowitzka MA (1999a) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Google Scholar 

  • Borowitzka MA (1999b) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic, London, pp 205–218

    Google Scholar 

  • Borowitzka MA (2010) Algae oils for biofuels: chemistry, physiology, and production. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS, Urbana, pp 271–289

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381

    Google Scholar 

  • Boussiba S (1993) Production of the nitrogen-fixing cyanobacterium Anabaena siamensis in a closed tubular reactor for rice farming. Microb Releases 2:35–39

    Google Scholar 

  • Campbell PK, Beer T, Batten D (2009) Greenhouse gas sequestration by algae—Energy and greenhouse gas life cycle studies http://www.csiro.au/resources/Greenhouse-Sequestration-Algae.html Accessed on: 19 July 2009.

  • Cayuela ML, Onema O, Kuikman PJ, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GBC Bioenergy 2:201–213

    Google Scholar 

  • Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:351–352

    Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of cells for intracellular products. Enzyme Microb Technol 8:194–204

    Google Scholar 

  • CIA (2009) The world fact book. Central Intelligence Agency, Washington DC

    Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae and other bioenergy feedstocks. Environ Sci Technol. doi:10.1021/es902838n

    Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorous: global food security and food for thought. Glob Environ Change 19:292–305

    Google Scholar 

  • Demirbas A (2009) Production of biodiesel from algae oils. Energy Sources A 31:163–168

    Google Scholar 

  • Doctor R, Palmer A, Coleman D, Davidson J, Hendricks C, Kaarstad O, Ozaki M, Austell M (2005) Transport of CO2. In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, pp 179–193

    Google Scholar 

  • Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ (2009) The water footprint of Biofuels: a drink or drive issue? Environ Sci Technol 43:3005–3010

    Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    Google Scholar 

  • Doucha J, Livansky KY (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Google Scholar 

  • Douskova I, Kastanek F, Maleterova Y, Kastanek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers Manage 51:606–611

    Google Scholar 

  • Dukes JS (2003) Burning buried sunshine: human consumption of ancient solar energy. Clim Change 61:31–44

    Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol A 57–58:223–231

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998). Effect of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 105–116.

  • Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci Technol 43:6094–6100

    Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as raw material for biofuels production. J Ind Microbiol Biotech 36:269–274

    Google Scholar 

  • Greenwell HG, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of The Royal Society Interface. doi:10.1098/rsif.2009.0322

    Google Scholar 

  • Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85:118–123

    Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Google Scholar 

  • Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21:489–492

    Google Scholar 

  • Haiduc AC, Brandenberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C (2009) SunChem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21:529–541

    Google Scholar 

  • Helwani Z, Othman MR, Azis N, Fernando WJN, Kim J (2010) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90:1502–1514

    Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Google Scholar 

  • Imada N, Kobayashi K, Tahara K, Oshima Y (1991) Production of an autoinhibitor by Skeletonema costatum and its effect on the growth of other phytoplankton. Nippon Suisan Gakkaishi—Bulletin of the Japanese Society of Scientific Fisheries 57:2285–2290

    Google Scholar 

  • Jiang J-Q, Mwabonje O (2009) Phosphorous recovery by liquid-liquid extraction. Sep Sci Technol 44:3258–3266

    Google Scholar 

  • Jorquera O, Kiperstock A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores Technol 101:1406–1413

    Google Scholar 

  • Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27:905–922

    Google Scholar 

  • Kannaiyan S, Rao KK, Hall DO (1994) Immobilization of Anabaena azollae from Azolla filiculoides in polyvinyl foam for ammonia production in a photobioreactor system. World J Microbiol Biotechnol 10:55–58

    Google Scholar 

  • Kaushik BD (1998) Use of cyanobacterial biofertilizers in rice cultivation: a technology improvement. In: Subramanian G, Kaushik BD, Venkatamaran GS (eds) Cyanobacterial biotechnology. Oxford & IBH Publishing Co, New Delhi, pp 211–222

    Google Scholar 

  • Kristiansen J (1996) Dispersal of freshwater algae—a review. Hydrobiologia 336:151–157

    Google Scholar 

  • Kuhl A (1974) Phosphorous. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 636–654

    Google Scholar 

  • Kulasooriya SA (1998) Cyanobacteria and Azolla as biofertilizer for rice. In: Subramanian G, Kaushik BD, Venkatamaran GS (eds) Cyanobacterial biotechnology. Oxford & IBH Publishing Co, New Delhi, pp 201–209

    Google Scholar 

  • Lee YK, Tay HS (1991) High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. J Appl Phycol 3:95–101

    Google Scholar 

  • Lou WY, Zong MH, Duan Q (2008) Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Biores Technol 99:8752–8758

    Google Scholar 

  • Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol. doi:10.1007/s10811-009-9496-8

    Google Scholar 

  • Mahasneh IA, Mishra AK, Tiwari DN (1994) Transposon-induced mutants of the cyanobacterium Anabaena sp PCC7120 capable of ammonia liberation. Biotech Lett 16:765–770

    Google Scholar 

  • Marion DF (2010) The race to make fuel out of algae poses risks as well as benefits. http://www.nytimes.com/cwire/2010/07/22/22climatewire-the-race-to-make-fuel-out-of-algae-poses-ris-80037.html (accessed 23 August 2010)

  • Marshall WA, Chalmers MO (2006) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594

    Google Scholar 

  • Mathews JA, Tan H (2009) Biofuels and indirect land use change effects: the debate continues. Biofuels, Bioprod Biorefin 3:305–317

    Google Scholar 

  • McCracken MD, Middaugh RE, Middaugh RS (1980) A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70:271–276

    Google Scholar 

  • McNeff CV, McNeff LC, Yan B, Nowlan DT, Rasmussen M, Gyberg AE, Krohn BJ, Fedie RL, Hoye TR (2008) A continuous catalytic system for biodiesel production. Appl Catal A 343:39–48

    Google Scholar 

  • Medes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:18–24

    Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268

    Google Scholar 

  • Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Google Scholar 

  • Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, 422

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Google Scholar 

  • Miao XL, Wu QY (2004) Fast pyrolysis of microalgae to produce renewable fuels. Anal Appl Pyrol 71:855–863

    Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Google Scholar 

  • Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgae and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77:139–153

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  • Molina Grima E, Belarbi EH, Ácién Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 215–251

    Google Scholar 

  • Moreno J, Vargas MA, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–197

    Google Scholar 

  • Mueller JA (2007) Western Europe. In: Spinosa L (ed) Wastewater sludge: a global overview of the current status and future prospects. IWA, London, pp 5–8

    Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Biores Technol 96:451–458

    Google Scholar 

  • Mulder K, Hagens N, Fisher B (2010) Burning water: a comparative analysis of the energy return on water used. Ambio 39:30–39

    Google Scholar 

  • Oberholster PJ, Botha AM, Muller K, Cloete TE (2005) Assessment of the genetic diversity of geographically unrelated Microcystis aeruginosa strains using amplified fragment length polymorphisms (AFLPs). African Journal of Biotechnology 4:389–399

    Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38:1191–1195

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 8:486–501

    Google Scholar 

  • Robles-Medina A, González-Moreno PA, Esteban-Cerdan L, Molina-Grima E (2009) Biocatalysis: towards even greener biodiesel production. Biotech Adv 27:398–408. doi:10.1016/j.biotechadv.2008.10.008

    Google Scholar 

  • Roessler PG, Chen L, Liu B, Dodge CN (2009) Secretion of fatty acids by photosynthetic organisms. US Patent Application 0298143A1

  • Sheehan JJ (2009) Biofuels and the conundrum of sustainability. Curr Opin Biotechnol 20:318–324

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado, pp 1–328, NREL/TP-580-24190

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Google Scholar 

  • Solomon BD (2010) Biofuels and sustainability. Ann NY Acad Sci 1185:119–134

    Google Scholar 

  • Steen L (1998) Phosphorous availability in the 21st Century: management of a non-renewable resource. Phosphorous Potassium 217:25–31

    Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010a) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010b) Future prospects of microalgal biofuel production systems. Trends in Plant Sci. doi:10.1016/j.tplants.2010.06.003

    Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077

    Google Scholar 

  • Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374

    Google Scholar 

  • Thomas SP, Zaritsky A, Boussiba S (1991) Ammonium excretion by a mutant of the Nitrogen-fixing cyanobacterium Anabaena siamensis. Biores Technol 38:161–166

    Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrogen Energy 34:4529–4536

    Google Scholar 

  • Tredici MR, Margheri MC, Zittelli GC, Biagiolini S, Capolino E, Natali M (1992) Nitrogen and phosphorus reclamation from municipal wastewater through an artificial food-chain system. Biores Technol 42:247–253

    Google Scholar 

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Biores Technol 100:2828–2831

    Google Scholar 

  • Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuels 23:5448–5453

    Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy and feasibility. J Appl Phycol 21:508–517

    Google Scholar 

  • Wang QL, Liu YD, Shen YW, Jin CY, Lu JS, Zhu JM, Li SH, Ley SH (1991) Studies on mixed mass cultivation of Anabaena spp (Nitrogen-fixing blue-green algae, Cyanobacteria) on a large scale. Biores Technol 38:221–228

    Google Scholar 

  • Wang B, Li Y, Wu N, Lau CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theroretical maximum algal oil production. Bioenerg Res 3:204–213

    Google Scholar 

  • Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: What do we really know? Environ Sci Technol 43:4763–4775

    Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertilizer production. Report for IEA Bioenergy Task 38:1–20

    Google Scholar 

  • World Economic Forum (2010) The future of industrial biorefineries. World Economic Forum, Geneva, pp 1–39

    Google Scholar 

  • Xiong W, Gao CF, Yan D, Wu C, Wu CY (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel. Biores Technol 101:2287–2293

    Google Scholar 

  • Yamada N, Murakami N, Morimoto T, Sakakibara J (1993) Auto-growth inhibitory substance from the fresh-water cyanobacterium Phormidium tenue. Chem Pharm Bull 41:1863–1865

    Google Scholar 

  • Yunes JS (1995) Effects of light and CO2 on nitrite liberation by the heterocystous cyanobacterium Anabaena variabilis. J Plant Physiol 147:313–320

    Google Scholar 

  • Zhang J, Miyachi S, Kurano N (2001) Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity. Appl Microbiol Biotechnol 55:428–433

    Google Scholar 

Download references

Acknowledgements

We would like to thank the many people who have participated in the debate on the many aspects of the sustainability of algal biofuels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Armin Borowitzka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowitzka, M.A., Moheimani, N.R. Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18, 13–25 (2013). https://doi.org/10.1007/s11027-010-9271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-010-9271-9

Keywords

Navigation