Skip to main content
Log in

The Uses of Colour Vision: Ornamental, Practical, and Theoretical

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

What is colour vision for? In the popular imagination colour vision is for “seeing the colours” — adding hue to the achromatic world of shape, depth and motion. On this view colour vision plays little more than an ornamental role, lending glamour to an otherwise monochrome world. This idea has guided much theorising about colour within vision science and philosophy. However, we argue that a broader approach is needed. Recent research in the psychology of colour demonstrates that colour vision is integral to a variety of visual processes, helping us to perform many types of visual tasks. We discuss some of this research and consider its implications for philosophical theories of colour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Though Mausfeld (2010) describes how the model—“the entire conceptual framework underlying the idea of a homogeneous and autonomous attribute of ‘colour per se’”—faced substantial criticism from the Gestalt school early in the twentieth century.

  2. There are different versions for colour realism. Physicalism is the view that colours can be identified with certain physical properties, such as spectral surface reflectance (e.g. Byrne and Hilbert 2003). Primitivism is the view that colours are sui generis, non-physical properties of objects (e.g. Watkins 2002, Allen 2015).

  3. It is doubtful that anyone has explicitly proposed this hypothesis. However, as one of us argues elsewhere (Chirimuuta 2015, chap. 4) adherence to the colouring book model in science, and colour realism in philosophy, created a tendency to ignore the alternative functions.

  4. In fact, trichromats are subject to a failure of lightness constancy in very dim light, known as the Purkinje effect. Because rod photoreceptors, used for night vision, are relatively more sensitive to shorter wavelengths of light than the average cone response, the apparent brightness of objects changes as cone-mediated day vision is substituted by rod-based scotopic vision. For example, Purkinje observed that red petals which in daylight are brightest, at early dawn appear dimmer than blue petals or surrounding leaves. (Wade and Brožek 2001). Note that rod vision is effectively monochromatic.

  5. As Hume (Hume 1975/1777, App. I, p.294) wrote in a different context, we have a “productive faculty”, which by, “gilding or staining all natural objects with the colours, borrowed from internal sentiment, raises in a manner a new creation”.

  6. This is the notion of “ecologically relevant misperception” (Chirimuuta 2015, chap. 7).

References

  • Akins, K. A. (2001). More than mere coloring: A dialog between philosophy and neuroscience on the nature of spectral vision. In S. M. B. Fitzpatrick & J. T. Bruer (Eds.), Carving our destiny: Scientific research faces a new millennium. Washington: Joseph Henry Press.

    Google Scholar 

  • Allen, K. (2015). Colour physicalism, naive realism, and the argument from structure. Minds and Machines. doi:10.1007/s11023-014-9353-7.

  • Brogaard, B. (2012). Color eliminativism or color relativism? Philosophical Papers, 41(2), 305–321.

    Article  Google Scholar 

  • Brogaard, B. (2015). The self-locating property theory of color. Minds and Machines. doi:10.1007/s11023-015-9373-y.

  • Byrne, A., & Hilbert, D. (2003). Color realism and color science. Behavioural and Brain Sciences, 26, 3–21.

    Google Scholar 

  • Campenhausen, C. (1986). Photoreceptors, lightness constancy and color vision. Naturwissenschaften, 73, 674–675.

    Article  Google Scholar 

  • Chirimuuta, M. (2014). The metaphysical significance of colour categorization: Mind, world, and their complicated relation. In Anderson, Biggam, Hough & Kay (Eds.), Colour Studies: a Broad Spectrum. Amsterdam and Philadelphia: John Benjamins.

  • Chirimuuta, M. (2015). Outside Color: Perceptual science and the puzzle of color in philosophy. Cambridge, MA: MIT Press.

  • Cohen, J. (2009). The red and the real. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Cohen, J. (2015). Ecumenicism, comparability, and color, or: How to have your cake and eat it, too. Minds and Machines. doi:10.1007/s11023-014-9354-6.

  • Conway, B. R. (2009). Color vision, cones, and color-coding in the cortex. Neuroscientist, 15(3), 274–290.

    Article  MathSciNet  Google Scholar 

  • Cowey, A., Alexander, I., Heywood, C. A., & Kentridge, R. W. (2008). Pupillary responses to coloured and contourless displays in total cerebral achromatopsia. Brain, 131, 2153–2160.

    Article  Google Scholar 

  • Gegenfurtner, K. R., & Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181–206.

    Article  Google Scholar 

  • Hardin, C. (1992). The virtues of illusion. Philosophical Studies, 68(3), 371–382.

    Article  Google Scholar 

  • Hardin, C. L. (1993). Color for philosophers. Indiana: Indianapolis.

    Google Scholar 

  • Hume, D. (1975/1777). Enquiries concerning human understanding and concerning principles of morals. 3rd (edn) Oxford: Oxford University Press.

  • Jacobs, G. H. (2004). Comparative color vision. In W. J. S. Krieg & L. M. Chapula (Eds.), The visual neurosciences (pp. 962–973). Cambridge, Mass: MIT Press.

    Google Scholar 

  • Kentridge, R. W., Heywood, C. A., & Cowey, A. (2004). Chromatic edges, surfaces and constancies in cerebral achromatopsia. Neuropsychologia, 42, 821–830.

    Article  Google Scholar 

  • Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as bayesian inference. Annual Review of Psychology, 55, 271–304.

    Article  Google Scholar 

  • Kingdom, F. A. A. (2003). Colour brings relief to human vision. Nature Neuroscience, 6, 641–644.

    Article  Google Scholar 

  • Kingdom, F. A. A., Beauce, C., & Hunter, L. (2004). Colour vision brings clarity to shadows. Perception, 33, 907–914.

    Article  Google Scholar 

  • Kingdom, F. A. A., & Libenson, L. (2015). Dichoptic colour saturation mixture: Binocular luminance contrast promotes perceptual averaging. Journal of Vision (in press).

  • Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement and depth. Journal of Neuroscience, 7(11), 3416–3468.

    Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1988). Segregation of form, color, movement and depth: Anatomy, physiology and perception. Science, 240, 740–749.

    Article  Google Scholar 

  • Marvullo, J. (1989). Color vision: A photographer’s guide (p. 58). Watson-Guptill Publications: New York.

    Google Scholar 

  • Mausfeld, R. (2010). Colour within an internalist framework: The role of ‘colour’ in the structure of the perceptual system. In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge: MIT Press.

    Google Scholar 

  • Maximov, V. V. (2000). Environmental factors which may have led to the appearance of colour vision. Philosophical Transactions of the Royal Society London B, 355, 1239–1242.

    Article  Google Scholar 

  • McIlhagga, W. H., & Mullen, K. T. (1996). Contour integration with color and luminance contrast. Vision Research, 36, 1265–1279.

    Article  Google Scholar 

  • McIlhagga, W. H. & Mullen, K. T. (1997). The contribution of colour to contour detection. In C. M. Dickenson, I. Murray, & D. Carden (Eds.), Colour vision research: Proceedings of the John Dalton conference (pp.187–197). London: Taylor & Francis.

  • Merleau-Ponty, M (1964/2001) Eye and mind in Continental Aesthetics. In R. Kearney & D. Rasmussen (Eds.), Transaction carleton dallery, Oxford: Blackwell Publishing.

  • Mollon, J. D. (1989). Tho’ she kneel’d in that place where they grew…: The uses and origins of primate color vision. Journal of Experimental Biology, 146, 21–38.

    Google Scholar 

  • Mullen, K. T., Beaudot, W. H. A., & McIlhagga, W. H. (2000). Contour integration in color vision: A common process for the blue-yellow, red-green and luminance mechanisms. Vision Research, 40, 639–655.

    Article  Google Scholar 

  • Osorio, D., & Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proceedings of the Royal Society of London, B, 272, 1745–1752.

    Article  Google Scholar 

  • Rao, R. P. N., Olshausen, B. A., & Lewicki, M. S. (Eds.). (2002). Probabilistic models of the brain: Perception and neural function. MIT Press: Cambridge.

    Google Scholar 

  • Rubin, J. M., & Richards, W. A. (1982). Color vision and image intensities: When are changes material? Biological Cybernatics, 45, 215–226.

    Article  Google Scholar 

  • Sacks, O. (1995). An Anthropologist on Mars. London: Picador.

    Google Scholar 

  • Shevell, S. K., & Kingdom, F. A. A. (2008). Color in Complex Scenes. The Annual Review of Psychology, 59, 143–166.

    Article  Google Scholar 

  • Solomon, S. G., & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8, 276–286.

    Article  Google Scholar 

  • Switkes, E., Bradley, A., & de Valois, K. K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 5, 1149–1162.

    Article  Google Scholar 

  • Wade, N. J., & Brožek, J. (2001). Purkinje’s vision. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wang, D., & Kingdom, F. A. A. (2014). Binocular luminance contrast reduces dichoptic masking between chromatic stimuli. Journal of Vision, 14(10), 962.

    Article  Google Scholar 

  • Watkins (2002). Rediscovering Colors: A study in Pollyanna realism. Dordrecht: Kluwer.

  • Zeki, S. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274, 423–428.

    Article  Google Scholar 

  • Zeki, S. (1993). A vision of the brain. Oxford: Blackwell.

    Google Scholar 

Download references

Acknowledgments

M. Chirimuuta would like to thank members of the 2012 and 2014 Perception seminars at the University of Pittsburgh for many helpful comments on this material. Supported by Canadian Institute of Health Research (CIHR) grant #MOP 12339 given to F. A. A. Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chirimuuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirimuuta, M., Kingdom, F.A.A. The Uses of Colour Vision: Ornamental, Practical, and Theoretical. Minds & Machines 25, 213–229 (2015). https://doi.org/10.1007/s11023-015-9364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-015-9364-z

Keywords

Navigation