Skip to main content
Log in

On the micro-mechanical study of 1–3 type piezoelectric composites with semi-coupled thermo-electro-elastic effects

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with a two-dimensional generalized plane strain micro-mechanical model to simulate semi-coupled thermo-electro-elastic behavior of transversely polarized piezoelectric fibrous composites. The solution domain includes a representative volume element (RVE) consists of a long piezoelectric fiber surrounded by corresponding matrix in a square array arrangement. Fibers have orthotropic and/or transversely isotropic properties while are perfectly bonded to the isotropic matrix. In addition, the constituents are assumed to have linear thermo-electro-elastic behavior. The virtual form of equilibrium equations has been extended to cover the semi-coupled thermo-electro-elastic loading by using appropriate constitutive relations. The element-free Galerkin method is employed to discretize the governing equations in terms of three main primary variables including, displacements, electric potential and temperature. The performance of the present micro-mechanical study reveals close agreement compared with other techniques available in the literature. Based on the present study, ample results are addressed to provide an insight into the effects of the local fields, i.e. displacement, electric potential, electric field, and stress distributions within the RVE for the specific fiber volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Schwartz MM (2002) Encyclopedia of smart materials. Wiley, Hoboken

    Book  Google Scholar 

  2. Safari A (1994) A new local meshless method for steady-state heat conduction in heterogeneous materials. J Phys III 4(7):1129–1149

    Google Scholar 

  3. Li L, Zhang S, Xu Z, Wen F, Geng X, Lee HJ, Shrout TR (2013) 1–3 piezoelectric composites for high-temperature transducer applications. J Phys D Appl Phys 46(16):165306

    Article  ADS  Google Scholar 

  4. Jayendiran R, Arockiarajan A (2013) Non-linear electromechanical response of 1–3 type piezocomposites. Int J Solids Struct 50(14):2259–2270

    Article  Google Scholar 

  5. Jayendiran R, Arockiarajan A (2013) Investigations on non-linear temperature-dependent electro-mechanical response of 1–3 type piezocomposites. Int J Solids Struct 201:23–35

    Google Scholar 

  6. Lin X-J, Zhou K-C, Zhang X-Y, Zhang D (2013) Development, modeling and application of piezoelectric fiber composites. Trans Nonferr Met Soc China 23(1):98–107

    Article  Google Scholar 

  7. Lv J, Yang K, Zhang H, Yang D, Huang Y (2014) A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials. Comput Mater Sci 87:88–99

    Article  Google Scholar 

  8. Lin CH, Muliana A (2013) Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech 224(7):1471–1492

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin C-H, Muliana A (2014) Micromechanical models for the effective time-dependent and nonlinear electromechanical responses of piezoelectric composites. J Intell Mater Syst Struct 25(11):1306–1322

    Article  Google Scholar 

  10. Dai Q, Ng K (2012) Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling. Mech Mater 53:29–46

    Article  ADS  Google Scholar 

  11. Berger H, Kari S, Gabber U, Rodriguez-Ramos R, Bravo-Castillero J, Guinovart-Diaz R (2005) Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique. Compos Struct 71(3):397–400

    Article  Google Scholar 

  12. Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart R, Otero JA, Bravo-Castillero J (2005) An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int J Solids Struct 42(21):5692–5714

    Article  MATH  Google Scholar 

  13. Rodrıguez-Ramos R, Sabina FJ, Guinovart-Dıaz R, Bravo-Castillero J (2001) Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-I. Elastic and square symmetry. Mech Mater 33(4):223–235

    Article  MATH  Google Scholar 

  14. Bravo-Castillero J, Guinovart-Dıaz R, Sabina FJ, Rodrıguez-Ramos R (2001) Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-II. Piezoelectric and square symmetry. Mech Mater 33(4):237–248

    Article  MATH  Google Scholar 

  15. Sakthivel M, Arockiarajan A (2010) An analytical model for predicting thermo-electro-mechanical response of 1–3 piezoelectric composites. Comput Mater Sci 48(4):759–767

    Article  Google Scholar 

  16. Sakthivel M, Arockiarajan A (2010) Thermo-electro-mechanical response of 1-3-2 type piezoelectric composites. Smart Mater Struct 19(10):105033

    Article  ADS  Google Scholar 

  17. Levin VM, Rakovskaja MI, Kreher WS (1999) The effective thermoelectroelastic properties of microinhomogeneous materials. Int J Solids Struct 36(18):2683–2705

    Article  MATH  Google Scholar 

  18. Mallik N, Ray MC (2003) Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J 41(4):704–710

    Article  ADS  Google Scholar 

  19. Ray MC (2006) Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int J Mech Mater Des 3(4):361–371

    Article  Google Scholar 

  20. Kumar A, Chakraborty D (2009) Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Mater Des 30(4):1216–1222

    Article  Google Scholar 

  21. Kar-Gupta R, Venkatesh TA (2005) Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J Appl Phys 98(5):054102

    Article  ADS  Google Scholar 

  22. Kar-Gupta R, Marcheselli C, Venkatesh TA (2008) Electromechanical response of 1–3 piezoelectric composites: effect of fiber shape. J Appl Phys 104(2):024105

    Article  ADS  Google Scholar 

  23. Eynbeygi M, Aghdam MM (2015) A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech 226(9):1–18

    Article  MATH  MathSciNet  Google Scholar 

  24. Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int J Solids Struct 37(39):5447–5464

    Article  MATH  Google Scholar 

  25. Aghdam MM, Pavier MJ, Smith DJ (2001) Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. Int J Solids Struct 38(22):3905–3925

    Article  MATH  Google Scholar 

  26. Cordes LW, Moran B (1996) Treatment of material discontinuity in the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1):75–89

    Article  ADS  MATH  Google Scholar 

  27. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  28. Dolbow J, Belytschko T (1998) An introduction to programming the meshless Element Free Galerkin method. Arch Comput Methods Eng 5(3):207–241

    Article  MathSciNet  Google Scholar 

  29. Liu G-R, Gu Y-T (2005) An introduction to meshfree methods and their programming. Springer, New York

    Google Scholar 

  30. Liu G-R (2010) Meshfree methods: moving beyond the finite element method. CRC press, Boca Raton

    MATH  Google Scholar 

  31. Meitzler A, Tiersten HF, Warner AW, Berlincourt D, Couqin GA, Welsh III FS (1988) IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176–1987. doi:10.1109/IEEESTD.1988.79638

  32. Ahmadi I, Sheikhy N, Aghdam MM, Nourazar SS (2010) A new local meshless method for steady-state heat conduction in heterogeneous materials. Eng Anal Bound Elem 34(12):1105–1112

    Article  MATH  MathSciNet  Google Scholar 

  33. EBL Products Inc., Piezoceramic tubes for ultra-precise positioning applications. www.eblproducts.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Aghdam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eynbeygui, M., Aghdam, M.M. On the micro-mechanical study of 1–3 type piezoelectric composites with semi-coupled thermo-electro-elastic effects. Meccanica 52, 3693–3711 (2017). https://doi.org/10.1007/s11012-017-0656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0656-7

Keywords

Navigation