Skip to main content
Log in

Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

As a Lagrangian meshless method, smoothed particle hydrodynamics (SPH) method is robust in modelling multi-fluid flows with interface fragmentations. However, the application for the simulation of a rising bubble bursting at a fluid surface is rarely documented. In this paper, the multiphase SPH model is extended and applied to simulate this challenging phenomenon. Different numerical techniques developed in different SPH models are combined in the present SPH model. The adoption of a background pressure determined based on the surface tension can help to avoid tensile instability and interface penetrations. An accurate surface tension model is employed. This model is suitable for bubble rising problems of small scales and high density ratios. An interface sharpness force is adopted to achieve a smoother bubble surface. A suitable formula of viscous force, which is proven to be able to accurately capture the bubble splitting and small bubble detachment, is employed. Moreover, a modified prediction-correction time-stepping scheme for a better numerical stability and allows a relatively larger CFL factor is adopted. It is also worthwhile to mention that the particle shifting technique, which helps to make the particle distribute in an arrangement of lower disorder, can significantly improve the numerical accuracy. Regarding the treatment of the fluid surface, particles of lighter phase are arranged above the free surface of the denser phase to avoid the kernel truncation in the density approximation. Furthermore, this technique also allows an accurate calculation of the surface tension on the fluid surface. A number of cases of bubbly flows are presented, which confirms the capability of the present multiphase SPH model in modelling complex bubble-surface interactions with the density ratio and viscosity ratio up to 1000 and 100 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(m\) :

Mass

\(V\) :

Volume

\(\varvec{r}\) :

Position vector

\(\varvec{u}\) :

Velocity vector

\(p\) :

Pressure

\(\varvec{g}\) :

Gravity acceleration

\(W\) :

Kernel function

\(h\) :

Smoothing length

\(\Delta x\) :

Initial particle spacing

\(c\) :

Artificial speed of sound

\(\Delta P\) :

Expected pressure variation

\(U_{\hbox{max} }\) :

Expected maximum velocity

\(H_{ini}\) :

Undisturbed fluid depth

\(\varvec{u}_{\hbox{max} }\) :

Real time maximum velocity

\(\delta \varvec{r}\) :

Particle shifting displacement

\(t\) :

Time

\(\Delta p\) :

Pressure difference

\(\kappa\) :

Interface curvature

\(\hat{\varvec{n}}\) :

Unit surface normal vector

\(R\) :

Initial bubble radius

\(D\) :

Initial bubble diameter

\(W_{f}\) :

Width of the fluid domain

\(H_{f}\) :

Height of the fluid domain

\(p_{b}\) :

Background pressure

\(d\) :

Spatial dimension

\(\Delta t\) :

Time increasement

\(x,\text{ }y\) :

Cartesian coordinates

\(u,\text{ }v\) :

Velocity components

\(C,\text{ }\varphi\) :

Color function

\(\begin{aligned} x^{ * } & = {x \mathord{\left/ {\vphantom {x D}} \right. \kern-0pt} D}, \\ y^{ * } & = {y \mathord{\left/ {\vphantom {y D}} \right. \kern-0pt} D} \\ \end{aligned}\) :

Dimensionless Cartesian coordinates

\(\begin{aligned} u^{ * } & = {u \mathord{\left/ {\vphantom {u {\sqrt {gD} }}} \right. \kern-0pt} {\sqrt {gD} }},\text{ } \\ v^{ * } & = {v \mathord{\left/ {\vphantom {v {\sqrt {gD} }}} \right. \kern-0pt} {\sqrt {gD} }} \\ \end{aligned}\) :

Dimensionless velocity components

\(t^{ * } = t\sqrt {g/D}\) :

Dimensionless time

\(U = \sqrt {gD}\) :

Characteristic velocity

\(Re = {{\rho_{l} D\sqrt {gD} } \mathord{\left/ {\vphantom {{\rho_{l} D\sqrt {gD} } {\eta_{l} }}} \right. \kern-0pt} {\eta_{l} }}\) :

Reynolds number

\(Bo = {{\rho_{l} gD^{2} } \mathord{\left/ {\vphantom {{\rho_{l} gD^{2} } \sigma }} \right. \kern-0pt} \sigma }\) :

Bond number

\(Mo = {{g\eta_{l}^{4} } \mathord{\left/ {\vphantom {{g\eta_{l}^{4} } {\rho_{l} \sigma^{3} }}} \right. \kern-0pt} {\rho_{l} \sigma^{3} }}\) :

Morton number

\({\text{We}} = {{\rho_{l} DU^{2} } \mathord{\left/ {\vphantom {{\rho_{l} DU^{2} } \sigma }} \right. \kern-0pt} \sigma }\) :

Weber number

\(Fr = {U \mathord{\left/ {\vphantom {U {\sqrt {gD} }}} \right. \kern-0pt} {\sqrt {gD} }}\) :

Froude number

\(\rho\) :

Density

\(\Delta \rho\) :

Change of the density

\(\rho_{0}\) :

Reference density at rest

\(\nabla\) :

Gradient operator

\(\sigma\) :

Surface tension coefficient

\(\eta\) :

Dynamic viscosity

\(\omega\) :

Vorticity

\(p_{ave}\) :

Average pressure

\(\omega^{*} = \omega \sqrt {D/g}\) :

Dimensionless vorticity

\(i,\text{ }j\) :

Particle index

\(l\) :

Denser fluid phase

\(g\) :

Lighter fluid phase

\(V\) :

Viscous stress

\(I\) :

Interface sharpness force

\(B\) :

Body force

\(S\) :

Surface tension

\(k,\text{ }l,\text{ }q\) :

Fluid phase index

References

  1. Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102

    Article  Google Scholar 

  2. Szewc K, Pozorski J, Minier JP (2013) Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. Int J Multiph Flow 50:98–105

    Article  Google Scholar 

  3. Zhang AM, Sun PN, Ming FR (2015) An SPH modeling of bubble rising and coalescing in three dimensions. Comput Methods Appl Mech Eng 294:189–209

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhang AM, Cui P, Cui J, Wang QX (2015) Experimental study on bubble dynamics subject to buoyancy. J Fluid Mech 776:137–160

    Article  ADS  Google Scholar 

  5. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  ADS  MATH  Google Scholar 

  6. Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162:301–337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Annaland MV, Deen NG, Kuipers JAM (2005) Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem Eng Sci 60:2999–3011

    Article  Google Scholar 

  8. Hua J, Stene JF, Lin P (2008) Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J Comput Phys 227:3358–3382

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang AM, Liu YL (2015) Improved three-dimensional bubble dynamics model based on boundary element method. J Comput Phys 294:208–223

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zhang AM, Li S, Cui J (2015) Study on splitting of a toroidal bubble near a rigid boundary. Phys Fluids (1994-present) 27:062102

    Article  ADS  Google Scholar 

  11. Ming FR, Zhang AM, Xue YZ, Wang SP (2016) Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Eng 117:359–382

    Article  Google Scholar 

  12. Natsui S, Nashimoto R, Takai H, Kumagai T, Kikuchi T, Suzuki RO (2016) SPH simulations of the behavior of the interface between two immiscible liquid stirred by the movement of a gas bubble. Chem Eng Sci 141:342–355

    Article  Google Scholar 

  13. Huber M, Dobesch D, Kunz P, Hirschler M, Nieken U (2016) Influence of orifice type and wetting properties on bubble formation at bubble column reactors. Chem Eng Sci 152:151–162

    Article  Google Scholar 

  14. Sun PN, Li YB, Ming FR (2015) Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Phys Sin 64:174701

    Google Scholar 

  15. Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228:8380–8393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  ADS  MATH  Google Scholar 

  17. Zainali A, Tofighi N, Shadloo M, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228:6703–6725

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hu X, Adams N (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Sun PN, Colagrossi A, Marrone S, Zhang AM (2016) The δplus-SPH model: simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49

    Article  ADS  MathSciNet  Google Scholar 

  21. Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J Comput Phys 245:456–475

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Meth Fluids 71:537–561

    Article  MathSciNet  Google Scholar 

  23. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  ADS  MATH  Google Scholar 

  24. Monaghan J, Gingold R (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    Article  ADS  MATH  Google Scholar 

  25. Colagrossi A, Souto-Iglesias A, Antuono M, Marrone S (2013) Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Phys Rev E 87:023302

    Article  ADS  Google Scholar 

  26. Rossi E (2014) 2D-vorticity genesis and dynamics studied through particle methods, Ph.D. thesis. Universita di, Roma “Sapienza”, Emanuele Rossi

  27. Colagrossi A, Bouscasse B, Antuono M, Marrone S (2012) Particle packing algorithm for SPH schemes. Comput Phys Commun 183:1641–1653

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D (2011) Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Phys Rev E 84:026705

    Article  ADS  Google Scholar 

  29. Sun PN, Ming FR, Zhang AM, Yao XY (2014) Investigation of coalescing and bouncing of rising bubbles under the wake influences using SPH method. In: ASME 33rd international conference on ocean, offshore and Arctic engineering, American Society of Mechanical Engineers

  30. Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Meth Fluids 60:1259–1288

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun PN, Colagrossi A, Marrone S, Zhang AM (2016) Detection of Lagrangian Coherent Structures in the SPH framework. Comput Methods Appl Mech Eng 305:849–868

    Article  ADS  MathSciNet  Google Scholar 

  32. Monaghan J (2012) Smoothed particle hydrodynamics and its diverse applications. Annu Rev Fluid Mech 44:323–346

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Meth Fluids 33:333–353

    Article  MATH  Google Scholar 

  34. Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Tofighi N, Yildiz M (2013) Numerical simulation of single droplet dynamics in three-phase flows using ISPH. Comput Math Appl 66:525–536

    Article  MathSciNet  MATH  Google Scholar 

  36. Nugent S, Posch H (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62:4968

    Article  ADS  Google Scholar 

  37. Zhang M (2010) Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J Comput Phys 229:7238–7259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhang M, Zhang S, Zhang H, Zheng L (2012) Simulation of surface-tension-driven interfacial flow with smoothed particle hydrodynamics method. Comput Fluids 59:61–71

    Article  MathSciNet  MATH  Google Scholar 

  39. Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229:5011–5021

    Article  ADS  MATH  Google Scholar 

  40. Adami S, Hu X, Adams N (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    Article  ADS  MathSciNet  Google Scholar 

  41. Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng 98:32–49

    Article  Google Scholar 

  42. Pan D, Chang CH (2000) The capturing of free surfaces in incompressible multi-fluid flows. Int J Numer Meth Fluids 33:203–222

    Article  MATH  Google Scholar 

  43. Li HY, Yap YF, Lou J, Shang Z (2015) Numerical modelling of three-fluid flow using the level-set method. Chem Eng Sci 126:224–236

    Article  Google Scholar 

  44. Zhao Y, Tan HH, Zhang B (2002) A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids. J Comput Phys 183:233–273

    Article  ADS  MATH  Google Scholar 

  45. Rudman M (1998) A volume-tracking method for incompressible multifluid flows with large density variations. Int J Numer Meth Fluids 28:357–378

    Article  MATH  Google Scholar 

  46. Tornberg AK, Engquist B (2000) A finite element based level-set method for multiphase flow applications. Comput Vis Sci 3:93–101

    Article  MATH  Google Scholar 

  47. Duchemin L, Popinet S, Josserand C, Zaleski S (2002) Jet formation in bubbles bursting at a free surface. Phys Fluids 14:817–821

    Article  MATH  Google Scholar 

  48. Ni B-Y, Li S, Zhang A-M (2013) Jet splitting after bubble breakup at the free surface. Acta Phys. Sin 62:124704

    Google Scholar 

  49. Di Y, Li R, Tang T, Zhang P (2007) Level set calculations for incompressible two-phase flows on a dynamically adaptive grid. J Sci Comput 31:75–98

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the fundamental research funds for central universities (HEUCFD1421), the China Scholarship Council (CSC, Grant No. 201506680004), the Natural Science Foundation of China (Grant No. 51609049), the Natural Science Foundation of Heilongjiang (Grant No. QC2016061), the China Postdoctoral Science Foundation (Grant No. 2015M581432) and CNR-INSEAN within the Project PANdA: PArticle methods for Naval Applications, protocol number N. 3263, 21 October 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, F.R., Sun, P.N. & Zhang, A.M. Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 52, 2665–2684 (2017). https://doi.org/10.1007/s11012-017-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0634-0

Keywords

Navigation