Skip to main content
Log in

A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents an analytical formula for the calculation of drag on an axially symmetric body moving steadily with a uniform speed in a microstretch fluid. The body is assumed to move axially in such a way that an axisymmetric flow around it is produced. The formula is constructed under the assumptions of steady creeping flow regardless of boundary conditions satisfied at the boundaries. The obtained formula is an extension of a corresponding one obtained by Happel and Brenner (Low Reynolds number hydrodynamics, Noordhoff, Leiden, 1973) for viscous fluids and it is also an extension of the formula obtained by Ramkissoon and Majumdar (Phys Fluids 19:16–21, 1976) for micropolar fluids. It is quite interesting to note that the derived formula has no contribution to the scalar microstretch function and therefore, it applies as well to micropolar fluids. As an application of the obtained formula, the motion of a spherical particle at the instant it passes the center of a spherical cavity filled with micorstretch fluid is considered. The slip boundary conditions for both the velocity and microrotion are used at the surface of the spherical particle. It is found that, the wall correction factor increases with the slip parameters, the micropolarity parameter and the radius ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. Noordhoff, Leiden

    MATH  Google Scholar 

  2. Ramkissoon H, Majumdar SR (1976) Drag on axially symmetric body in the stokes flow of micropolar fluids. Phys Fluids 19:16–21

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Eringen AC (1969) Micropolar fluids with stretch. Int J Eng Sci 7:I15

    Article  Google Scholar 

  4. Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–218

    Article  MathSciNet  MATH  Google Scholar 

  5. Eringen AC (1998) Microcontinuum field theories, I and II. Springer, New York

    MATH  Google Scholar 

  6. Rogausch H (1976) Time-dependent reaction of human red cell deformability on sphering agents. Pflug Arch 362:121–126

    Article  Google Scholar 

  7. Nagasawa T (1981) Deformation of transforming red cells in various pH solutions. Experientia 37:977–978

    Article  Google Scholar 

  8. Bird RB, Armstrong RC, Hassager O, Curtiss CF (1987) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  9. Kröger M (2004) Simple models for complex non equilibrium fluids. Phys Rep 390:453–551

    Article  ADS  MathSciNet  Google Scholar 

  10. Bor-Kucukatay M, Kucukatay V, Agar A, Baskurt O (2005) Effect of sulfite on red blood cell deformability ex vivo and in normal and sulfite oxidase-deficient rats in vivo. Arch Toxicol 79:542–546

    Article  Google Scholar 

  11. Rao SKL, Raju KV (1979) Stability solutions for microstretch fluid flows. Int J Eng Sci 17:465–473

    Article  Google Scholar 

  12. Rao SKL, Raju KV (1980) Existence solutions for microstretch fluid flow. Int J Eng Sci 18:1411–1419

    Article  MATH  Google Scholar 

  13. Ieşan D (1997) Uniqueness results in the theory of microstretch fluids. Int J Eng Sci 35(7):669–679

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen AC (1997) Thermomicrostretch and bubbly fluids. Int J Eng Sci 28(7):133–143

    MathSciNet  Google Scholar 

  15. Eringen AC (1992) Theory of microstretch liquid crystals. J Math Phys 23:4078–4086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Eringen AC (2000) Electrodynamics of microstretch liquid polymers. Int J Eng Sci 38:959–987

    Article  MathSciNet  MATH  Google Scholar 

  17. Aydemir NU, Venart JE (1990) Flow of a thermo micropolar fluid with stretch. Int J Eng Sci 28:1211–1222

    Article  Google Scholar 

  18. Ariman T (1970) Fluids with microstretch. Rheol Acta 9:542–549

    Article  MATH  Google Scholar 

  19. Narasimhan MNL (2003) A mathematical model of pulsatile flows of microstretch fluids in circular tubes. Int J Eng Sci 41:231–247

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherief HH, Faltas MS, Ashmawy EA (2012) Fundamental solutions for axis symmetric translational motion of a microstretch fluid. Acta Mech Sin 28(3):605–611

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sherief HH, Faltas MS, Ashmawy EA (2009) Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. J Fluid Mech 619:277–293

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ezzat MA, El-Sapa S (2012) State space approach to magnetohydrodynamic flow of perfectly conducting micropolar fluid with stretch. Int J Numer Methods Fluids 70:114–134

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeffery GB (1915) On the steady rotation of a solid of revolution in a viscous fluid. Proc Lond Math Soc 14:327–338

    Article  MATH  Google Scholar 

  24. Stimson M, Jeffery GB (1926) The motion of two-spheres in a viscous fluid. Proc R Soc Lond Ser A 111:110–116

    Article  ADS  MATH  Google Scholar 

  25. Migoun NP (1984) On hydrodynamic boundary conditions for microstructural fluids. Reheol Acta 23:575–581

    Article  Google Scholar 

  26. Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. Appl Math Methods 29:333–346

    MATH  Google Scholar 

  27. Sherief HH, Faltas MS, Saad EI (2008) Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. Z Angew Math Phys 59:293–312

    Article  MathSciNet  MATH  Google Scholar 

  28. Sherief HH, Faltas MS, Saad EI (2013) Slip at the surface of an oscillating Spheroidal particle in a micropolar fluid. ANZIAM J 55:E1–E50

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee HM (1947) M.S. Thesis, University of Iowa, Iowa City, Iowa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreen El-Sapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, H.H., Faltas, M.S. & El-Sapa, S. A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid. Meccanica 52, 2655–2664 (2017). https://doi.org/10.1007/s11012-017-0617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0617-1

Keywords

Navigation