Skip to main content
Log in

Limit analysis of masonry circular buttressed arches under horizontal loads

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Arches are among the most widely used and characterizing elements in masonry structures, particularly in historical buildings and churches. They are susceptible to severe damage due to seismic actions, excessive vertical loads, or support settlements. While an exhaustive literature is available for the behaviour of arched structures under vertical loads and support settlements, less attention has been devoted to their behaviour under horizontal seismic actions. In this paper, limit analysis approach to circular buttressed arches under horizontal loads is applied through a procedure developed by the authors based on non-linear programming technique. The suggested procedure is automatic, and structural engineers can easily implement it in a computer algebra system to identify the failure mechanism and the position of the hinges that minimises the horizontal load multiplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brandonisio G, Mele E, De Luca A (2015) Closed form solution for predicting the horizontal capacity of masonry portal frames through limit analysis and comparison with experimental test results. Eng Fail Anal 55:246–270

    Article  Google Scholar 

  2. Kazinczy G (1914) Kìsérletek Befalazott Tartòkkal (Experiments with clamped girders). Betonszemle, vol II (in Hungarian)

  3. Baker JF (1949) A review of recent investigations into the behaviour of steel frames in the plastic range. J Inst Civ Eng 31(3):224–240

    Article  Google Scholar 

  4. Onat ET, Prager W (1953) Limit analysis of arches. J Mech Phys Solids 1(2):77–89

    Article  ADS  MathSciNet  Google Scholar 

  5. Kooharian A (1952) Limit analysis of voussoir (segmental) and concrete arches. J Am Concr Inst 24(4):317–328

    Google Scholar 

  6. Heyman J (1966) The stone skeleton. Int J Solids Struct 2:249–279

    Article  Google Scholar 

  7. Heyman J (1969) The safety of masonry arches. Int J Mech Sci 11:363–385

    Article  Google Scholar 

  8. Heyman J (1982) The masonry arch. Ellis Horwood, Chichester

    Google Scholar 

  9. Huerta S (2008) The analysis of masonry architecture: a historical approach. Archit Sci Rev 51(4):297–328

    Article  Google Scholar 

  10. Huerta S (2001) Mechanics of masonry vaults: the equilibrium approach. In: Lourenço PB, Roca P (eds) Historical constructions. Possibilities of numerical and experimental techniques. University of Minho, Guimaraes, pp 47–69

  11. Block P, DeJong M, Ochsendorf J (2006) As hangs the flexible line: equilibrium of masonry arches. Nexus Netw J 8(2):13–24

    Article  MathSciNet  MATH  Google Scholar 

  12. Angelillo M (1993) Constitutive relations for no-tension materials. Meccanica 28:195–202

    Article  MATH  Google Scholar 

  13. Milani E, Milani G, Tralli A (2008) Limit analysis of masonry vaults by means of curved shell finite elements and homogenization. Int J Solids Struct 45(20):5258–5288

    Article  MATH  Google Scholar 

  14. Como M, Grimaldi A (1983) Analisi limite di pareti murarie sotto spinta. In: Quaderni di teoria e tecnica delle strutture. Università di Napoli, Istituto di Tecnica delle Costruzioni (in Italian)

  15. Como M (2013) Statics of historic masonry constructions. Springer, Berlin

    Book  Google Scholar 

  16. Giordano A, De Luca A, Mele E, Romano A (2007) A simple formula for predicting the horizontal capacity of masonry portal frames. Eng Struct 29:2109–2123

    Article  Google Scholar 

  17. Lucibello G, Brandonisio G, Mele E, De Luca A (2013) Seismic damage and performance of Palazzo Centi after L’Aquila earthquake: a paradigmatic case study of effectiveness of mechanical steel ties. Eng Fail Anal 34:407–430

    Article  Google Scholar 

  18. De Lucia R, Giordano A, Mele E, De Luca A (2009) Portanza Orizzontale di Archi in Muratura. In: XIII Convegno Anidis 2009, L’Ingegneria Simica in Italia, Bologna, 28 Giugno–2 Luglio 2009 (in Italian)

  19. De Luca A, Giordano A, Mele E (2004) A simplified procedure for assessing the seismic capacity of masonry arches. Eng Struct 26:1915–1929

    Article  Google Scholar 

  20. Giordano A, De Luca A, Mele E, Romano A (2006) Simplified evaluation of the horizontal capacity of masonry arches. Structural Analysis of Historical Constructions, New Delhi

    Google Scholar 

  21. Mazziotti A, Brandonisio G, Lucibello G, De Luca A (2016) Structural analysis of the basket dome in the chapel of the holy shroud by Guarino Guarini. Int J Archit Herit. doi:10.1080/15583058.2016.1222463

    Google Scholar 

  22. Dimitri R, Tornabene F (2015) A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Eng Fail Anal 52:1–34

    Article  Google Scholar 

  23. Decanini L, De Sortis A, Goretti A, Langenbach R, Mollaioli F, Rasulo A (2004) Performance of masonry buildings during the 2002 Molise, Italy, earthquake. Earthq Spectra 20:S191–S220

    Article  Google Scholar 

  24. Lagomarsino S, Podestà S (2004) Seismic vulnerability of ancient churches. Part 2: statistical analysis of surveyed data and methods for risk analysis. Earthq Spectra 20:395–412

    Article  Google Scholar 

  25. D’Ayala DF, Pagnoni S (2011) Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull Earthq Eng 9:81–104

    Article  Google Scholar 

  26. Dizhur D, Ingham J, Moon L, Griffith M, Schultz A, Senaldi I, Magenes G et al (2011) Performance of masonry buildings and churches in the 22 February 2011 Christchurch earthquake. Bull NZ Soc Earthq Eng 44(4):279–296

    Google Scholar 

  27. Lagomarsino S (2009) Damage assessment of churches after L’Aquila earthquake. Bull Earthq Eng 2012:73–92

    Google Scholar 

  28. Brandonisio G, Lucibello G, Mele E, De Luca A (2013) Damage and performance evaluation of masonry churches in 2009 L’Aquila earthquake. Eng Fail Anal 34(2013):693–714

    Article  Google Scholar 

  29. Sorrentino L, Liberatore L, Decanini LD, Liberatore D (2013) The performance of churches in the 2012 Emilia earthquakes. Bull Earthq Eng 12(5):2299–2331

    Article  Google Scholar 

  30. Gilbert M (2007) Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. In: ARCH’07—5th international conference on arch bridges, pp 13–28

  31. Livesley RK (1978) Limit analysis of structures formed from rigid blocks. Int J Numer Methods Eng 12(12):1853–1871

    Article  MATH  Google Scholar 

  32. Livesley RK (1992) A computational model for the limit analysis of three-dimensional masonry structures. Meccanica 27:161–172

    Article  MATH  Google Scholar 

  33. Baggio C, Trovalusci P (1998) Limit analysis for no-tension and frictional three-dimensional discrete systems. Mech Struct Mach 26(3):287–304

    Article  Google Scholar 

  34. Baggio C, Trovalusci P (2000) Collapse behaviour of three-dimensional brick-block systems using non linear programming. Struct Eng Mech 10(2):181–195

    Article  Google Scholar 

  35. Lasdon LS, Waren AD, Jain A, Ratner M (1978) Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Softw (TOMS) 4(1):34–50

    Article  MATH  Google Scholar 

  36. Monti G, Vailati M, Gaetani A, Paolone A (2014) Analytical models for seismic assessment and strengthening of masonry arches. In: 9th International masonry conference 2014, Guimarães

  37. Foraboschi P (2004) Strengthening of masonry arches with fiber-reinforced polymer strips. J Compos Constr 8:191–202

    Article  Google Scholar 

  38. Cancelliere I, Imbimbo M, Sacco E (2010) Experimental tests and numerical modeling of reinforced masonry arches. Eng Struct 32(3):776–792

    Article  Google Scholar 

  39. DeJong M, De Lorenzis L, Adams S, Ochsendorfd J (2008) Rocking stability of masonry arches in seismic regions. Earthq Spectra 24(4):847–865

    Article  Google Scholar 

  40. Calderini C, Lagomarsino S (2014) Seismic response of masonry arches reinforced by tie-rods: static tests on a scale model. J Struct Eng 141(5)

Download references

Funding

This study was funded by Italian Civil Protection Department—Presidency of the Council of Ministers in the context of ReLUIS IV—Research Project 2015 “Rete di Laboratori Universitari Ingegneria Sismica, Task: Masonry Structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Brandonisio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The expressions for the evaluation of weights, horizontal and vertical components of displacements of the centroids of rigid bodies involved in the kinematical chains of Fig. 7 are provided in the following subsections. In particular, with reference to the failure mechanisms II and III of Fig. 6, these expressions can be used in Eq. (1) for obtaining the horizontal collapse multipliers λ of the masonry buttressed arch.

1.1 Mechanism II (global mechanism)

From simple geometrical considerations on the rotation angles of the three rigid bodies of the mechanism II shown in Fig. 7c, d, the follow relationships among Ψ A , Ψ B and Ψ C can be found:

$$\psi_{A} = \psi$$
(27)
$$\psi_{B} = \psi_{A} \cdot \frac{{L/2 - (R + t) \cdot \cos \vartheta_{B} }}{{\left( {\frac{L + B}{{1 + \frac{\tan \alpha }{\tan \beta }}}} \right) - \left[ {L/2 - (R + t) \cdot \cos \vartheta_{B} } \right]}}$$
(28)
$$\psi_{C} = \psi_{B} \cdot \frac{{L/2 - \frac{2R + B}{{\left( {1 + \frac{\tan \alpha }{\tan \beta }} \right)}} - R \cdot \cos \vartheta_{C} }}{{B + L/2 + R \cdot \cos \vartheta_{C} }}$$
(29)

where

$$\tan \alpha = \frac{{h_{O} + (R + t) \cdot \sin \vartheta_{B} }}{{L/2 - (R + t) \cdot \cos \vartheta_{B} }}$$
(30)
$$\tan \beta = \frac{{h_{O} + R \cdot \sin \vartheta_{C} }}{{B + L/2 + R \cdot \cos \vartheta_{C} }}$$
(31)

hence, we have (angles in radians):

$$u_{pier,l} = \psi_{A} \cdot \frac{h}{2}$$
(32)
$$v_{pier,r} = \psi_{A} \cdot \frac{B}{2}$$
(33)
$$u_{arch,l} = \psi_{A} \cdot \left[ {h_{O} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\vartheta_{B} }}{2}} \right)} \right]$$
(34)
$$v_{arch,l} = - \psi_{A} \cdot \left[ {\frac{L}{2} - \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\vartheta_{B} }}{2}} \right)} \right]$$
(35)
$$u_{arch,c} = \psi_{B} \cdot \left\{ {\left[ {B + L - \left( {\frac{L + B}{{1 + \frac{\tan \alpha }{\tan \beta }}}} \right)} \right] \cdot \tan \beta - \left[ {h_{O} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\vartheta_{B} + \vartheta_{C} }}{2}} \right)} \right]} \right\}$$
(36)
$$v_{arch,c} = \psi_{B} \cdot \left[ {\frac{L}{2} - \left( {\frac{L + B}{{1 + \frac{\tan \alpha }{\tan \beta }}}} \right) - \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\vartheta_{B} + \vartheta_{C} }}{2}} \right)} \right]$$
(37)
$$u_{arch,r} = \psi_{C} \cdot \left[ {h_{O} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\pi - \vartheta_{C} }}{2}} \right)} \right]$$
(38)
$$v_{arch,r} = \psi_{C} \cdot \left[ {B + \frac{L}{2} - \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\pi - \vartheta_{C} }}{2}} \right)} \right]$$
(39)
$$u_{pier,r} = \psi_{C} \cdot \frac{h}{2}$$
(40)
$$v_{pier,r} = \psi_{C} \cdot \frac{B}{2}$$
(41)

and the corresponding weights can be evaluated as follows:

$$W_{arch,l} = \gamma \cdot s_{A} \cdot \left( {\frac{{\vartheta_{B} }}{2}} \right) \cdot t \cdot (2R + t)$$
(42)
$$W_{arch,c} = \gamma \cdot s_{A} \cdot \left( {\frac{{\vartheta_{C} - \vartheta_{B} }}{2}} \right) \cdot t \cdot (2R + t)$$
(43)
$$W_{arch,r} = \gamma \cdot s_{A} \cdot \left( {\frac{{\pi - \vartheta_{C} }}{2}} \right) \cdot t \cdot (2R + t)$$
(44)
$$W_{pier,l} = W_{pier,r} = \gamma \cdot s_{P} \cdot B \cdot h$$
(45)

where γ is the weight per unit volume of masonry material, s A is the thickness of the arch, and s P is the thickness of the pier wall.

1.2 Mechanism III (mixed mechanism)

The expressions to calculate the rotation angles Ψ A , Ψ B and Ψ C of the rigid bodies involved in the failure mechanism III of Fig. 7e are:

$$\psi_{A} = \psi$$
(46)
$$\psi_{B} = \psi_{A} \cdot \frac{{R \cdot \cos \vartheta_{A} - (R + t) \cdot \cos \vartheta_{B} }}{{d^{II} }}$$
(47)
$$\psi_{C} = \psi_{B} \cdot \frac{{(R + t) \cdot \cos \vartheta_{B} - d^{III} - R \cdot \cos \vartheta_{C} }}{{B + L/2 + R \cdot \cos \vartheta_{C} }}$$
(48)

where d III is the horizontal distance between the rotational centres (1,2) = B and (2) reported in Fig. 7e:

$$d^{III} = \frac{{B + \frac{L}{2} + R \cdot \cos \vartheta_{A} - \frac{{h_{O} + R \cdot \sin \vartheta_{A} }}{\tan \beta }}}{{1 + \frac{\tan \alpha }{\tan \beta }}} - [R \cdot \cos \vartheta_{A} - (R + t) \cdot \cos \vartheta_{B} ]$$
(49)

and

$$\tan \alpha = \frac{{ - R \cdot \sin \vartheta_{A} + (R + t) \cdot \sin \vartheta_{B} }}{{R \cdot \cos \vartheta_{A} - (R + t) \cdot \cos \vartheta_{B} }}$$
(50)
$$\tan \beta = \frac{{h_{O} + R \cdot \sin \vartheta_{C} }}{{B + L/2 + R \cdot \cos \vartheta_{C} }}$$
(51)
$$h_{O} = h - (R + t) \cdot \cos \omega$$
(52)

Therefore, the horizontal and vertical components of the displacements of the centroids of the three rigid bodies involved in the mechanism III in Fig. 7f can be evaluated through the following formulas:

$$u_{arch,l} = \psi_{A} \cdot \left[ { - R \cdot \sin \vartheta_{A} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\vartheta_{A} + \vartheta_{B} }}{2}} \right)} \right]$$
(53)
$$v_{arch,l} = - \psi_{A} \cdot \left[ {R \cdot \cos \vartheta_{A} - \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\vartheta_{A} + \vartheta_{B} }}{2}} \right)} \right]$$
(54)
$$u_{arch,c} = \psi_{B} \cdot \left\{ {\left[ {B + \frac{L}{2} + (R + t) \cdot \cos \vartheta_{B} + d^{II} } \right] \cdot \tan \beta - \left[ {h_{O} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\vartheta_{B} + \vartheta_{C} }}{2}} \right)} \right]} \right\}$$
(55)
$$v_{arch,c} = \psi_{B} \cdot \left[ {(R + t) \cdot \cos \vartheta_{B} - d^{II} - \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\vartheta_{B} + \vartheta_{C} }}{2}} \right)} \right]$$
(56)
$$u_{arch,r} = \psi_{C} \cdot \left[ {h_{O} + \left( {R + \frac{t}{2}} \right) \cdot \sin \left( {\frac{{\pi + \vartheta_{C} }}{2}} \right)} \right]$$
(57)
$$v_{arch,r} = \psi_{C} \cdot \left[ {B + \frac{L}{2} + \left( {R + \frac{t}{2}} \right) \cdot \cos \left( {\frac{{\pi + \vartheta_{C} }}{2}} \right)} \right]$$
(58)
$$u_{pier,r} = \psi_{C} \cdot \frac{h}{2}$$
(59)
$$v_{pier,r} = \psi_{C} \cdot \frac{B}{2}$$
(60)

The weights of the three rigid blocks of buttressed arch to consider for the application of Eq. (1) at the mechanism III, can be calculated by using the following expressions (angles in radians):

$$W_{arch,l} = \gamma \cdot s_{A} \cdot \left( {\frac{{\vartheta_{B} - \vartheta_{A} }}{2}} \right) \cdot t \cdot (2R + t)$$
(61)
$$W_{arch,c} = \gamma \cdot s_{A} \cdot \left( {\frac{{\vartheta_{C} - \vartheta_{B} }}{2}} \right) \cdot t \cdot (2R + t)$$
(62)
$$W_{arch,r} = \gamma \cdot s_{A} \cdot \left( {\frac{{\vartheta_{D} - \vartheta_{C} }}{2}} \right) \cdot t \cdot (2R + t)$$
(63)
$$W_{pier,r} = \gamma \cdot s_{P} \cdot B \cdot h$$
(64)

where γ is the weight per unit volume of masonry material, s A is the thickness of the arch, and s P is the thickness of the pier wall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandonisio, G., Mele, E. & De Luca, A. Limit analysis of masonry circular buttressed arches under horizontal loads. Meccanica 52, 2547–2565 (2017). https://doi.org/10.1007/s11012-016-0609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0609-6

Keywords

Navigation