Skip to main content
Log in

Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A study on the bending, buckling and free vibration of functionally graded curved beams with variable curvatures using isogeometric analysis is presented here. Non-uniform rational B-splines, known from computer aided geometric design, are employed to describe the exact geometry and approximate the unknown fields of a curved beam element based on Timoshenko model. Material properties of the beam are assumed to vary continuously through the thickness direction according to the power law form. The numerical examples investigated in this paper deal with circular, elliptic, parabolic and cycloid curved beams. Results have been verified with the previously published works in both cases of straight functionally graded beam and isotropic curved beam. The effects of material distribution, aspect ratio and slenderness ratio on the response of the beam with different boundary conditions are numerically studied. Furthermore, an interesting phenomenon of changing mode shapes for both buckling and free vibration characteristics corresponding to the variation in the parameters mentioned above is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Li SR, Cao DF, Wan ZQ (2013) Bending solutions of FGM Timoshenko beams from those of the homogenous Euler–Bernoulli beams. Appl Math Model 37(10–11):7077–7085

    Article  MathSciNet  Google Scholar 

  2. Sr Li, Batra RC (2013) Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Compos Struct 95:5–9

    Article  Google Scholar 

  3. Simsek M, Kocaturk T (2009) Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos Struct 90(4):465–473

    Article  Google Scholar 

  4. Kadoli R (2008) Static analysis of functionally graded beams using higher order shear deformation theory. Appl Math Model 32:2509–2525

    Article  MATH  Google Scholar 

  5. Simsek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl Eng Des 240(4):697–705

    Article  Google Scholar 

  6. Ht Thai, Vo TP (2012) Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int J Mech Sci 62(1):57–66

    Article  Google Scholar 

  7. Li XF (2008) A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J Sound Vib 318(4–5):1210–1229

    Article  ADS  Google Scholar 

  8. Sankar BV (2001) An elasticity solution for functionally graded beams. Compos Sci Technol 61(5):689–696

    Article  Google Scholar 

  9. Simsek M (2015) Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos Struct 133:968–978

    Article  Google Scholar 

  10. Simsek M (2016) Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions. Compos Struct 149:304–314

    Article  Google Scholar 

  11. Taheri A, Abolbashari M, Hassani B (2014) Free vibration characteristics of functionally graded structures by an isogeometrical analysis approach. Proc J Mech Eng B J Eng 228(9):1512–1530

    Google Scholar 

  12. Lu C, Chen W, Xu R, Lim C (2007) Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int J Solids Struct 45:258–275

    Article  MATH  Google Scholar 

  13. Atai A, Naei M, Rahrovan S (2012) Limit load analysis of shallow arches made of functionally bi-directional graded materials under mechanical loading. J Mech Sci Technol 26(6):1811–1816

    Article  Google Scholar 

  14. Zhang C, Sladek J, Sladek V (2003) Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. Int J Solids Struct 40:5251–5270

    Article  MATH  Google Scholar 

  15. Kutis V, Murin J, Belak R, Paulech J (2011) Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials. Compos Struct 89:1192–1205

    Article  Google Scholar 

  16. Ke L, Wang Y (2006) Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int J Solids Struct 43:5779–5798

    Article  MATH  Google Scholar 

  17. Murin J, Kutis V, Paulech J, Hrabovsky J (2011) Electric-thermal link finite element made of a FGM with spatial variation of material properties. Compos Part B 42:1966–1979

    Article  Google Scholar 

  18. Dym C, Williams H (2010) Stress and displacement estimates for arches. J Struct Eng 137(1):49–58

    Article  Google Scholar 

  19. Timoshenko S, Goodier JN (1986) Theory of elasticity. McGraw-Hill Book Company, New York

  20. Kim MY, Nam-Ii K, Sung-Bo K (2005) Spatial stability of shear deformable curved beams with non-symmetric thin-walled sections. II: F. E. solutions and parametric study. Comput Struct 83(31–32):2542–2558

    Article  Google Scholar 

  21. Raveendranath P, Singh G, Pradhan B (1999) A two-noded locking-free shear flexible curved beam element. Int J Numer Methods Eng 44(2):265–280

    Article  MATH  Google Scholar 

  22. Chang C, Dewey H (2006) Vibration characteristics of curved beams. J Mech Mater Struct 4:675–692

    Article  Google Scholar 

  23. Tseng YP, Huang CS, Lin CJ (1997) Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature. J Sound Vib 207(1):15–31

    Article  ADS  Google Scholar 

  24. Malekzadeh P (2007) In-plane free vibration analysis of laminated thick circular deep arches. J Reinf Plast Compos 26(18):1943–1951

    Article  Google Scholar 

  25. Nieh KY, Huang CS, Tseng YP (2003) An analytical solution for in-plane free vibration and stability of loaded elliptic arches. Comput Struct 81(13):1311–1327

    Article  Google Scholar 

  26. Oh SJ, Lee BK, Lee IW (2000) Free vibrations of non-circular arches with non-uniform cross-section. Int J Solids Struct 37(36):4871–4891

    Article  MATH  Google Scholar 

  27. Lin KC, Hsieh CM (2007) The closed form general solutions of 2-D curved laminated beams of variable curvatures. Compos Struct 79(4):606–618

    Article  Google Scholar 

  28. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. At Luu, Ni Kim, Lee J (2015) NURBS-based isogeometric vibration analysis of generally laminated deep curved beams with variable curvature. Compos Struct 119:150–165

    Article  Google Scholar 

  30. Luu AT, Kim NI, Lee J (2015) Isogeometric vibration analysis of free-form Timoshenko curved beams. Meccanica 50(1):169–187

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee SJ, Park KS (2013) Vibrations of Timoshenko beams with isogeometric approach. Appl Math Model 37(22):9174–9190

    Article  MathSciNet  Google Scholar 

  32. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, Le T-H, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int J Numer Meth Eng 91:571–603

    Article  MathSciNet  MATH  Google Scholar 

  33. Bouclier R, Elguedj T, Combescure A (2012) Locking free isogeometric formulations of curved thick beams. Comput Methods Appl Mech Eng 245–246:144–162

    Article  MathSciNet  MATH  Google Scholar 

  34. Dryden J (2007) Bending of inhomogeneous curved bars. Int J Solids Struct 44(11–12):4158–4166

    Article  MATH  Google Scholar 

  35. Wang M, Liu Y (2013) Elasticity solutions for orthotropic functionally graded curved beams. Eur J Mech A Solids 37:8–16

    Article  MathSciNet  MATH  Google Scholar 

  36. Song X, Li SR, Zhao YG (2011) Buckling behavior of FGM elastic arches subjected to uniformly distributed radial follow load 239–242:422–427

  37. Song X, Li SR (2008) Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads. Adv Mater Res 33:699–706

    Article  Google Scholar 

  38. Filipich CP, Piovan MT (2010) The dynamics of thick curved beams constructed with functionally graded materials. Mech Res Commun 37(6):565–570

    Article  MATH  Google Scholar 

  39. Piovan M, Domini S, Ramirez J (2012) In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams. Compos Struct 94(11):3194–3206

    Article  Google Scholar 

  40. Shafiee H, Naei M, Eslami M (2006) In-plane and out-of-plane buckling of arches made of FGM. Int J Mech Sci 48:907–915

    Article  MATH  Google Scholar 

  41. Praveen G, Reddy J (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic metal plates. Int J Solids Struct 35(33):4457–4476

    Article  MATH  Google Scholar 

  42. Yousefi A, Rastgoo A (2011) Free vibration of functionally graded spatial curved beams. Compos Struct 93:3048–3056

    Article  Google Scholar 

  43. Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. J Appl Mech 50:609–614

    Article  MATH  Google Scholar 

  44. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Pringer-Verlag, New York

    Book  MATH  Google Scholar 

  45. Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  46. Dym C, William H (2011) Stress and displacement estimates for arches. J Struct Eng 137:49–58

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by a Grant (NRF-2015R1A2A1A01007535) from NRF (National Research Foundation of Korea) funded by MEST (Ministry of Education and Science Technology) of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

Expressions of stiffnesses \(A_{11},B_{11},D_{11},A_{55}\)

$$\begin{aligned} A_{11}=\frac{b_wh(E_{t}+kE_{b})}{(1+k)} , \end{aligned}$$
(30a)
$$\begin{aligned} B_{11}=\frac{b_wh^2(E_{t}-E_{b})k}{2(1+k)(2+k)} , \end{aligned}$$
(30b)
$$\begin{aligned} D_{11}= \frac{b_wh^3(k(k^2+3k+8)E_{b}+3(k^2+k+2)E_{t})}{12(1+k)(2+k)(3+k)} , \end{aligned}$$
(30c)
$$\begin{aligned} A_{55}= \frac{b_wh(E_{t}+kE_{b})}{2(1+\nu )(1+k)} . \end{aligned}$$
(30d)

Expressions of \(I_{0},I_{1},I_{2}\)

$$\begin{aligned}I_{0}&= \frac{b_wh(\rho _{t}+k\rho _{b})}{(1+k)} , \\ I_{1}&= \frac{b_wh^2(\rho _{t}-\rho _{b})k}{2(1+k)(2+k)} , \\ I_{2}&= \frac{b_wh^3(k(k^2+3k+8)\rho _{b}+3(k^2+k+2)\rho _{t})}{12(1+k)(2+k)(3+k)} . \\ \end{aligned}$$

Appendix 2

Explicit forms of element stiffness matrix

$$\begin{aligned} {\mathbf{K}} =&\left[ \begin{array}{ccc} {\mathbf {K}}^{11} &{\mathbf {K}}^{12} & {\mathbf {K}}^{13} \\ {\mathbf {K}}^{21} &{\mathbf {K}}^{22} & {\mathbf {K}}^{23} \\ {\mathbf {K}}^{31} &{}{\mathbf {K}}^{32} &{} {\mathbf {K}}^{33} \end{array} \right] , \nonumber \\ K_{ij}^{11}&= \int _{L^e}^{L^{e+1}} (A_{11}N_i'N_j'+A_{55}\kappa ^2 N_i N_j)dx , \end{aligned}$$
(31a)
$$\begin{aligned} K_{ij}^{22}= \int _{L^e}^{L^{e+1}} (A_{11}\kappa ^2N_iN_j+A_{55} N_i' N_j')dx , \end{aligned}$$
(31b)
$$\begin{aligned} K_{ij}^{33}= \int _{L^e}^{L^{e+1}} (D_{11}N_i'N_j'+A_{55} N_i N_j)dx , \end{aligned}$$
(31c)
$$\begin{aligned} K_{ij}^{12}= \int _{L^e}^{L^{e+1}} (A_{11}\kappa N_i'N_j-A_{55} \kappa N_i N_j')dx , \end{aligned}$$
(31d)
$$\begin{aligned} K_{ij}^{13}= \int _{L^e}^{L^{e+1}} (-A_{55} \kappa N_iN_j+B_{11} N_i' N_j')dx , \end{aligned}$$
(31e)
$$\begin{aligned} K_{ij}^{23}= \int _{L^e}^{L^{e+1}} (A_{55}N_i'N_j+B_{11} \kappa N_i N_j')dx , \end{aligned}$$
(31f)
$$\begin{aligned} K_{ij}^{33}= \int _{L^e}^{L^{e+1}} (A_{55}N_i'N_j+B_{11} \kappa N_i N_j')dx . \end{aligned}$$
(31g)

Explicit forms of element geometric stiffness matrix

$$\begin{aligned} {\mathbf{ G }}=&\left[ \begin{array}{ccc} {\mathbf {G}}^{11} &{\mathbf {G}}^{12} &{}0 \\ {\mathbf {G}}^{21} & {\mathbf{G}}^{22} & 0 \\ 0 & 0 & 0 \end{array} \right] , \nonumber \\ G_{ij}^{11}&= \int _{L^e}^{L^{e+1}} ( \kappa ^2 N_iN_j )dx , \end{aligned}$$
(32a)
$$\begin{aligned} G_{ij}^{22}= \int _{L^e}^{L^{e+1}} N_i'N_j' dx , \end{aligned}$$
(32b)
$$\begin{aligned} G_{ij}^{12}= \int _{L^e}^{L^{e+1}} (- \kappa N_iN_j' )dx . \end{aligned}$$
(32c)

Explicit forms of element mass matrix

$$\begin{aligned}{ \mathbf{ M}} =&\left[ \begin{array}{ccc} {\mathbf {M}}^{11} &{}0 &{}{\mathbf {M}}^{13} \\ 0 &{}{\mathbf {M}}^{22} &{} 0 \\ {\mathbf {M}}^{31} &{} 0 &{} {\mathbf {M}}^{33} \end{array} \right] , \nonumber \\ M_{ij}^{11}&= \int _{L^e}^{L^{e+1}} (I_0+2\kappa I_1 +\kappa ^2 I_2)N_iN_jdx , \end{aligned}$$
(33a)
$$\begin{aligned} M_{ij}^{22}= \int _{L^e}^{L^{e+1}} I_0N_iN_jdx , \end{aligned}$$
(33b)
$$\begin{aligned} M_{ij}^{33}= \int _{L^e}^{L^{e+1}} I_2N_iN_jdx , \end{aligned}$$
(33c)
$$\begin{aligned} M_{13}^{1}= \int _{L^e}^{L^{e+1}} (I_1+\kappa I_2 )N_iN_jdx . \end{aligned}$$
(33d)

Explicit forms of element load vector

$$\begin{aligned} {\mathbf{F}} =&\left\{ \begin{array}{ccc} {\mathbf {F}}^1 \\ {\mathbf {F}}^2 \\ {\mathbf {F}}^3 \end{array} \right\} , \nonumber \\ F_{ij}^{1}&= \int _{L^e}^{L^{e+1}} p_x N_i dx , \end{aligned}$$
(34a)
$$\begin{aligned} F_{ij}^{2}= \int _{L^e}^{L^{e+1}} p_z N_i dx , \end{aligned}$$
(34b)
$$\begin{aligned} F_{ij}^{3}= \int _{L^e}^{L^{e+1}} p_m N_i dx . \end{aligned}$$
(34c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, TA., Luu, AT. & Lee, J. Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach. Meccanica 52, 2527–2546 (2017). https://doi.org/10.1007/s11012-016-0603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0603-z

Keywords

Navigation