Skip to main content
Log in

Control of nonlinear vibrations using the adjoint method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a new methodology is proposed to address the problems of suppressing structural vibrations and attenuating contact forces in nonlinear mechanical systems. The computational algorithms developed in this work are based on the mathematical framework of the calculus of variation and take advantage of the numerical implementation of the adjoint method. To this end, the principal aspects of the optimal control theory are reviewed and employed to derive the adjoint equations which form a nonlinear differential-algebraic two-point boundary value problem that defines the mathematical solution of the optimal control problem. The adjoint equations are obtained and solved numerically for the optimal design of control strategies considering a twofold control structure: a feedforward (open-loop) control architecture and a feedback (closed-loop) control scheme. While the feedforward control strategy can be implemented using only the active control paradigm, the feedback control method can be realized employing both the active and the passive control approaches. For this purpose, two dual numerical procedures are developed to numerically compute a set of optimal control policies, namely the adjoint-based control optimization method for feedforward control actions and the adjoint-based parameter optimization method for feedback control actions. The computational methods developed in this work are suitable for controlling nonlinear nonautonomous dynamical systems and feature a broad scope of application. In particular, it is shown in this paper that by setting an appropriate mathematical form of the cost functional, the proposed methods allow for simultaneously solving the problems of suppressing vibrations and attenuating interaction forces for a general class of nonlinear mechanical systems. The numerical example described in the paper illustrates the key features of the adjoint method and demonstrates the feasibility and the effectiveness of the proposed adjoint-based computational procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New York

    Book  MATH  Google Scholar 

  2. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New York

    MATH  Google Scholar 

  4. Meirovitch L (2010) Fundamentals of vibrations. McGraw Hill, Boston

    Google Scholar 

  5. Hagedorn P, DasGupta A (2007) Vibrations and waves in continuous mechanical systems. Wiley, Chichester

    Book  MATH  Google Scholar 

  6. Preumont A (2011) Vibration control of active structures: an introduction, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Bauchau OA, Craig JI (2009) Structural analysis: with applications to aerospace structures. Springer, New York

    Book  Google Scholar 

  8. Hodges DH, Pierce GA (2002) Introduction to structural dynamics and aeroelasticity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Genta G (2009) Vibration dynamics and control. Springer, New York

    Book  MATH  Google Scholar 

  10. Inman DJ (2006) Vibration with control. Wiley, Chichester

    Book  Google Scholar 

  11. Slotine JE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  12. Cheli F, Diana G (2015) Advanced dynamics of mechanical systems. Springer, London

    Book  MATH  Google Scholar 

  13. Gawronski WK (2004) Advanced structural dynamics and active control of structures. Springer, New York

    Book  MATH  Google Scholar 

  14. Skelton RE, de Oliveira MC (2009) Tensegrity systems. Springer, New York

    MATH  Google Scholar 

  15. Juang JN, Phan MQ (2004) Identification and control of mechanical systems. Cambridge University Press, Cambridge

    Google Scholar 

  16. Seifried R (2014) Dynamics of underactuated multibody systems: modeling, control and optimal design. Springer, London

    Book  MATH  Google Scholar 

  17. Zhong WX (2004) Duality system in applied mechanics and optimal control. Kluwer Academic Publishers, New York

    MATH  Google Scholar 

  18. Inman DJ (2008) Engineering vibration, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Al Majid A, Dufour R (2002) Formulation of a hysteretic restoring force model: application to vibration isolation. J Nonlinear Dyn 27:69–85

    Article  MATH  Google Scholar 

  20. Ashour ON, Nayfeh AH (2002) Adaptive control of flexible structures using a nonlinear vibration absorber. J Nonlinear Dyn 28:309–322

    Article  MATH  Google Scholar 

  21. Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control. Springer, London

    Google Scholar 

  22. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation and control. Taylor and Francis, New York

    Google Scholar 

  23. Luchini P, Bottaro A (2014) An introduction to adjoint problems. Annu Rev Fluid Mech 46(1):493

    Article  ADS  MATH  Google Scholar 

  24. Luchini P, Bottaro A (2014) Adjoint equations in stability analysis. Annu Rev Fluid Mech 46:1–30

    Article  MATH  Google Scholar 

  25. Bewley TR (2015) Numerical renaissance: simulation, optimization and control. Renaissance Press, To be published

  26. Bertsekas DP (2005) Dynamic programming and optimal control—volume 1. Athena Scientific, Belmont

    MATH  Google Scholar 

  27. Bertsekas DP (2005) Dynamic programming and optimal control—volume II. Athena Scientific, Belmont

    MATH  Google Scholar 

  28. Bellman RE, Dreyfus SE (1962) Applied dynamic programming. Oxford University Press, London

    Book  MATH  Google Scholar 

  29. Bewley TR (2001) Flow control: new challenges for a new eenaissance. Prog Aerosp Sci 37:21–58

    Article  Google Scholar 

  30. Kim J, Bewley TR (2007) A linear systems approach to flow control. Annu Rev Fluid Mech 39:383–417

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. J Flow Turbul Combust 65:393–415

    Article  MATH  Google Scholar 

  32. Giannetti F, Luchini P (2006) Leading-edge receptivity by adjoint methods. J Fluid Mech 547:21–53

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Giannetti F, Camarri S, Luchini P (2010) Structural sensitivity of the secondary instability in the wake of a circular cylinder. J Fluid Mech 651:319–337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Luchini P, Bewley TR (2010) Methods for the solution of very large flow-control problems that bypass open-loop model reduction. Bull Am Phys Soc 55–16:42–42

    Google Scholar 

  35. Schmidt-Wetekam C, Zhang D, Hughes R, Bewley TR (2007) Design, optimization, and control of a new class of reconfigurable hopping rovers. In: Proceedings of the 46th IEEE conference on decision and control New Orleans, December 12–14

  36. Summers S, Bewley TR (2007) MPDopt: a versatile toolbox for adjoint-based model predictive control of smooth and switched nonlinear dynamic systems. In: Proceedings of the 46th IEEE conference on decision and control New Orleans, December 12–14

  37. Bewley TR, Temam R, Zianed M (2000) A general framework for robust control in fluid mechanics. Phys D Nonlinear Phenom 138(3–4):360–392

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Raibert MH, Craig JJ (1981) Hybrid position-force control of manipulators. J Dyn Syst Meas Control 103(2):126–133

    Article  Google Scholar 

  39. Gorinevsky D, Formalsky A, Schneider A (1997) Force control of robotics systems. CRC Press, Boca Raton

    MATH  Google Scholar 

  40. Spong MW, Hutchinson S, Vidyasagar M (2005) Robot modeling and control. Wiley, New York

    Google Scholar 

  41. Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Guida D, Pappalardo CM (2015) Control design of an active suspension system for a quarter-car model with hysteresis. J Vib Eng Technol 3(3):277–299

    Google Scholar 

  43. Guida D, Pappalardo CM (2013) Development of a closed-chain multibody model of a high-speed railway pantograph for hybrid motion/force control of the pantograph/catenary interaction. J Mech Eng Ind Des 3(5):45–85

    Google Scholar 

  44. Ogata K (2010) Modern control engineering, 5th edn. Prentice Hall, Boston

    MATH  Google Scholar 

  45. Guida D, Pappalardo CM (2013) Swing-up and stabilization of an inverted pendulum with dry friction. J Mech Eng Ind Des 2(5):40–56

    Google Scholar 

  46. Vincent TL, Grantham JW (1997) Nonlinear and optimal control systems. Wiley, New York

    Google Scholar 

  47. Betts JT (2010) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Siam, Philadelphia

    Book  MATH  Google Scholar 

  48. Clarke F (2013) Functional analysis, calculus of variation and optimal control. Springer, London

    Book  MATH  Google Scholar 

  49. Stengel RF (1986) Optimal control and estimation. Dover, New York

    MATH  Google Scholar 

  50. Bement MT, Bewley TR (2008) Excitation design for damage detection using iterative adjoint-based optimization—Part 1: method development. Mech Syst Signal Process 23:783–793

    Article  ADS  Google Scholar 

  51. Nise NS (2011) Control system engineering, 6th edn. Wiley, New York

    MATH  Google Scholar 

  52. Troutman JL (1995) Variational calculus and optimal control: optimization with elementary convexity, 2nd edn. Springer, New York

    MATH  Google Scholar 

  53. Liberzon D (2012) Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, Princeton

    MATH  Google Scholar 

  54. Lewis FL, Vrabie DL, Syrmos VL (2012) Optimal control, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  55. Bement MT, Bewley TR (2008) Excitation design for damage detection using iterative adjoint-based optimization—Part 2: experimental demonstration. Mech Syst Signal Process 23:794–803

    Article  ADS  Google Scholar 

  56. Kirk DE (1970) Optimal control theory: an introduction. Dover, Mineola

    Google Scholar 

  57. Guida D, Pappalardo CM (2013) Optimal control design of an active mass damper with dry friction. J Mech Eng Ind Des 2(4):27–39

    Google Scholar 

  58. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  59. Guida D, Pappalardo CM (2013) A new method for control law design of a quarter-car suspension system. J Mech Eng Ind Des 1(5):37–58

    Google Scholar 

  60. Snyman JA (2005) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, New York

    MATH  Google Scholar 

  61. Shabana AA (2013) Dynamics of multibody systems, Forth edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  62. Meirovitch L (2010) Methods of analytical dynamics. Dover, Mineola

    MATH  Google Scholar 

  63. Lanczos C (1986) The bariational principles of mechanics, 4th edn. Dover, Mineola

    MATH  Google Scholar 

  64. Goldstein H, Poole CP, Safko JL (2013) Classical mechanics, 3rd edn. Addison Wesley, San Francisco

    MATH  Google Scholar 

  65. Fantoni I, Lozano R (2001) Non-linear control for underactuated mechanical systems. Springer, London

    MATH  Google Scholar 

  66. Guida D, Pappalardo CM (2014) Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7):1547–1559

    Article  MathSciNet  MATH  Google Scholar 

  67. Pappalardo CM (2015) A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. J Nonlinear Dyn 81(4):1841–1869

    Article  MathSciNet  MATH  Google Scholar 

  68. Pappalardo CM, Patel MD, Tinsley B, Shabana AA (2015) Contact force control in multibody pantograph/catenary systems. In: Proceedings of the institution of mechanical engineers, Part K: journal of multibody dynamics, pp 1–22

  69. Pappalardo CM, Yu Z, Zhang X, Shabana AA (2015) Rational ANCF thin plate finite element. J Comput Nonlinear Dyn 11(5):1–15

    Google Scholar 

  70. Kulkarni S, Pappalardo CM, Shabana AA (2017) Pantograph/catenary contact formulations. ASME J Vib Acoust 139(1):1–12

    Google Scholar 

  71. Pappalardo CM, Wallin M, Shabana AA (2017) A new ANCF/CRBF fully parametrized plate finite element. ASME J Comput Nonlinear Dyn 12(3):1–13

    Google Scholar 

  72. Guida D, Nilvetti F, Pappalardo CM (2012) Modelling, identification and control of a three-story building system. J Mech Eng Ind Des 1(3):36–60

    Google Scholar 

  73. Guida D, Pappalardo CM (2009) Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans Appl Theor Mech 4(4):205–214

    Google Scholar 

  74. Guida D, Nilvetti F, Pappalardo CM (2009) Parameter identification of a two degrees of freedom mechanical system. Int J Mech 3(2):23–30

    Google Scholar 

  75. Guida D, Nilvetti F, Pappalardo CM (2010) Parameter identification of a full-car model for active suspension design. J Achiev Mater Manuf Eng 40(2):138–148

    Google Scholar 

  76. Nilvetti F, Pappalardo CM, Guida D (2012) Mass, stiffness and damping identification of a two-story building model. J Mech Eng Ind Des 1(2):19–35

    Google Scholar 

  77. Guida D, Nilvetti F, Pappalardo CM (2009) Instability induced by dry friction. Int J Mech 3(3):44–51

    Google Scholar 

  78. Guida D, Nilvetti F, Pappalardo CM (2009) Dry friction inuence on cart pendulum dynamics. Int J Mech 3(2):31–38

    Google Scholar 

  79. Guida D, Nilvetti F, Pappalardo CM (2010) Dry friction of bearings on dynamics and control of an inverted pendulum. J Achiev Mater Manuf Eng 38(1):80–94

    Google Scholar 

  80. Guida D, Pappalardo CM (2013) A new control algorithm for active suspension systems featuring hysteresis. FME Trans 41(4):285–290

    Google Scholar 

  81. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York

    MATH  Google Scholar 

  82. Meirovitch L (1980) Computational methods in structural dynamics. Springer, Netherlands

    MATH  Google Scholar 

  83. Bathe JK (2007) Finite element procedures. Prentice Hall, Upper Saddle River, New Jersey

    MATH  Google Scholar 

  84. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  85. Shabana AA (2012) Computational continuum mechanics, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  86. Shabana AA (2015) Definition of ANCF finite elements. ASME J Comput Nonlinear Dyn 10(5):1–5

    Google Scholar 

  87. Belytschko T, Liu WK, Moran B, Elkhodary KI (2013) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  88. Wong JY (2009) Terramechanics and off-road vehicle engineering: terrain behaviour, off-road vehicle performance, and design, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  89. Pacejka H (2012) Tire and vehicle dynamics, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  90. Blundell M, Harty D (2014) Multibody systems approach to vehicle dynamics, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  91. Shabana AA, Zaazaa KE, Sugiyama H (2008) Railroad vehicle dynamics: a computational approach. CRC Press - Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  92. Rajamani R (2012) Vehicle dynamics and control, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  93. Crassidis JL, Junkins JL (2011) Optimal estimation of dynamic systems, 2nd edn. CRC Press - Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  94. Manca F, Giordano S, Palla PL, Zucca R, Cleri F, Colombo L (2012) Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. J Chem Phys 136:1–11

    Article  Google Scholar 

  95. Manca F, Giordano S, Palla PL, Zucca R, Cleri F, Colombo L (2012) Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. J Chem Phys 137:1–13

    Article  Google Scholar 

  96. Lewis FL, Xie L, Popa D (2008) Optimal and robust estimation: with an introduction to stochastic control theory, 2nd edn. CRC Press - Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  97. Brown RG, Hwang PYC (2012) Introduction to random signals and applied Kalman filtering with MATLAB exercises, 4th edn. Wiley, Hoboken

    MATH  Google Scholar 

  98. Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  99. Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems. Volume I: basic methods. Allyn and Bacon, Needham

    Google Scholar 

  100. Cheli F, Pennestri E (2006) Cinematica e dinamica dei sistemi multibody, volume 1. Casa Editrice Ambrosiana, Milano

    Google Scholar 

  101. Cheli F, Pennestri E (2006) Cinematica e dinamica dei sistemi multibody, volume 2. Casa Editrice Ambrosiana, Milano

    Google Scholar 

  102. Udwadia FE, Kalaba RE (2007) Analytical dynamics: a new approach. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  103. Udwadia FE, Kalaba RE, De Falco D (2009) Dinamica analitica. Un nuovo approccio. Edises, Napoli

    Google Scholar 

  104. Udwadia FE (2016) Constrained motion of Hamiltonian systems. J Nonlinear Dyn 84:11351145

    Article  MathSciNet  Google Scholar 

  105. Koganti PB, Udwadia FE (2016) Unified approach to modeling and control of rigid multibody systems. J Guid Control Dyn 39(12):2683–2698

    Article  ADS  Google Scholar 

  106. Udwadia FE (2016) Inverse problem of Lagrangian mechanics for classically damped linear multi-degrees-of-freedom systems. ASME J Appl Mech 83(10):1–4

    Article  Google Scholar 

  107. Udwadia FE, Koganti PB (2015) Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. J Nonlinear Dyn 82(1–2):547–562

    Article  MathSciNet  MATH  Google Scholar 

  108. Udwadia FE, Wanichanon T (2015) Control of uncertain nonlinear multibody mechanical systems. ASME J Appl Mech 81(4):1–11

    Google Scholar 

  109. Pappalardo CM (2012) Combination of extended Udwadia–Kalaba control algorithm with extended Kalman filter estimation method. J Mech Eng Ind Des 1(1):1–18

    Google Scholar 

  110. Guida D, Pappalardo CM (2012) A new control algorithm for nonlinear underactuated mechanical systems. J Mech Eng Ind Des 1(4):61–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Guida, D. Control of nonlinear vibrations using the adjoint method. Meccanica 52, 2503–2526 (2017). https://doi.org/10.1007/s11012-016-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0601-1

Keywords

Navigation